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Abstract— Markov Decision Process (MDP) congestion game
is an extension of classic congestion games, where a continuous
population of selfish agents each solves a Markov decision
processes with congestion: the payoff of a strategy decreases
as more population uses it. We draw parallels between key
concepts from capacitated congestion games and MDPs. In par-
ticular, we show that the population mass constraints in MDP
congestion games are equivalent to imposing tolls/incentives on
the reward function, which can be utilized by a social planner to
achieve auxiliary objectives. We demonstrate such methods on
a simulated Seattle ride-share model, where tolls and incentives
are enforced for two distinct objectives: to guarantee minimum
driver density in downtown Seattle, and to shift the game
equilibrium towards a maximum social output.

I. INTRODUCTION

We consider a class of non-cooperative games, Markov
decision process congestion games (MDPCG) [1], [2], which
combine features of classic nonatomic routing games [3]–
[5]—i.e. games where a continuous population of agents
each solve a shortest path problem—and stochastic games
[6], [7]—i.e. games where each agent solves a Markov
decision process (MDP). In MDP congestion games, similar
to mean field games with congestion effects [8], [9], a
continuous population of selfish agents each solve an MDP
with congestion effects on its state-action rewards: the payoff
of a strategy decreases as more population mass chooses it.
An equilibrium concept for MDPCG’s akin to the Wardrop
equilibrium [3] for routing games was introduced in [1].

In this paper, we consider modifying MDPCG’s game
rewards to enforce artificial state constraints that may arise
from a system level. For example, in a traffic network
with selfish users, tolls can be used to lower the traffic in
certain neighbourhoods to decrease ambient noise. Drawing
on techniques from capacitated routing games [10], [11] and
constrained MDPs [12], [13], we derive reward modification
methods that shifts the game equilibrium mass distribution.
Alternatively, constraints may arise in the following scenario:
central agent, which we denote by a social planner, may
enforce constraints to improve user performance as measured
by an alternative objective. Equilibria of MDPCGs have
been shown to exhibit similar inefficiencies to classic routing
games [14], [15]. As in routing games, we show how reward
adjustments can minimize the gap between the equilibrium
distribution and the socially optimal distribution [16], [17].

*This work was is supported by NSF award CNS-1736582.
1Authors are with the William E. Boeing Department of Aeronautics

and Astronautics, University of Washington, Seattle. sarahli@uw.edu
yueyu@uw.edu behcet@uw.edu

2Authors are with the Department of Electrical Engineering, University
of Washington, Seattle. ratliffl@uw.edu djcal@uw.edu

Since MDPCG models selfish population behaviour under
stochastic dynamics, our constraint enforcing methods can be
considered as an incentive design framework. One practical
application in particular is modifying the equilibrium be-
haviour of ride-sharing drivers competing in an urban setting.
Ride-share has become a significant component of urban
mobility in the past decade [18]. As data becomes more
readily available and computation more automated, drivers
will have the option of employing sophisticated strategies to
optimize their profits—e.g. as indicated in popular media,
there are a number of mechanisms available to support
strategic decision-making by ride-sharing drivers [19]–[21].
This provides the need for game theoretic models of ride-
sharing competition [22]: while rational drivers only seek to
optimize their individual profits, ride-sharing companies may
choose to incentivize driver behaviours that are motivated
by other objectives, such as maintaining driver coverage
over large urban areas with varied rider demand as well as
increasing overall profits.

The rest of the paper is organized as follows. Section
II provides a discussion of related work. In Section III,
we introduce the optimization model of MDPCG’s and
highlight the relationship between the classical congestion
game equilibrium—i.e. Wardrop equilibrium—and Q-value
functions from MDP literature. Section IV-A shows how a
social planner can shift the game equilibrium through reward
adjustments. Section IV-B adopts the Frank-Wolfe numerical
method [23] to solve the game equilibrium and provides
an online interpretation of Frank-Wolfe in the context of
MDPCG. Section V provides an illustrative application of
MDPCG, in which agents repeatedly play a ride-share model
game in the presence of population constraints as well as
improving the social welfare. Section VI concludes and
comments on future work.

II. RELATED WORK

Stochastic population games were first studied in the
literature as anonymous sequential games [24]–[27]. Recent
developments in stochastic population games has been in the
mean field game [8], [28] community. Our work is related to
potential mean field games [8], [29] in discrete time, discrete
state space [30] and mean field games on graphs [9], [31].

Our work can also be thought of as a continuous popula-
tion potential game [32] where the strategies are policies of
an MDP or as a modification of classic nonatomic routing
games [5] where routes have been replaced by policies.

Techniques for cost modification to satisfy capacity con-
straints in nonatomic routing games were developed in [10].
See also [5, Sec. 2.8.2] for a discussion of tolling to enforce
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side-constraints and [5, Sec. 2.4] for a discussion of tolling
to improve social welfare in routing games.

III. MDP CONGESTION GAMES

We consider a continuous population of selfish agents each
solving a finite-horizon MDP with horizon of length T , finite
state space S, and finite action space A. We use the notation
[T ] = {1, . . . , T} to denote the integer set of length T .

The population mass distribution, y ∈ RT×|S|×|A|, is
defined for each time step t ∈ [T ], state s ∈ S, and action
a ∈ A. ytsa ∈ R is the population mass in state s taking
action a at time t, and

∑
a ytsa is the total population mass

in state s at time t.
Let P ∈ R(T−1)×|S|×|S|×|A| be a stochastic transition

tensor. Pts′sa ∈ R defines the probability of ytsa transi-
tioning to state s′ in stage t + 1 when action a is chosen.
The transition tensor P is defined such that Pts′sa ≥ 0 and∑
s′∈S

∑
a∈A Pts′sa = 1, ∀ s′, s ∈ S, a ∈ A, t ∈ [T − 1].

The population mass distribution obeys the stochastic mass
propagation equation∑

a∈A
y1sa = ps, ∀ s ∈ S∑

a∈A
yt+1,sa =

∑
s′∈S

∑
a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1]

where ps is the initial population mass in state s.
The reward of each time-state-action triplet is given by

a function rtsa : RT×|S|×|A|+ → R. rtsa(y) is the reward
for taking action a in state s at time t for given population
distribution y. In particular, if rtsa(y) simply depends on
ytsa, then there exists functions `tsa : R+ → R such that

rtsa(y) = `tsa(δTtsay) (1)

where δtsa is an indicator vector for (t, s, a) such that
δTtsay = ytsa. We say the game is a congestion game if the
rewards have the form of (1) and the functions `tsa(ytsa)
satisfy the following assumption.

Assumption 1. `tsa(ytsa) is a strictly decreasing continuous
function of ytsa for each t, s, a.

Intuitively, the reward of each time-state-action triplet
decreases as more members of the population choose that
state-action pair at that time. We will use r(y) or `(y) to
refer to the tensor of all reward functions in each case.

Each member of the population solves an MDP with pop-
ulation dependent rewards rtsa(y). As in the MDP literature,
we define Q-value functions for each (t, s, a) pair as

Qtsa =

rtsa(y) +
∑
s′
Pts′sa

(
max
a

Qt+1,s′a

)
t ∈ [T − 1]

rtsa(y) t = T

(2)

In the game context, Q-value function Qtsa(y) represents
the distribution dependent payoff that the population receives
when choosing action a at (t, s). The Q-value functions
can be used to define an equilibrium akin to the Wardrop
equilibrium of routing games [1].

Definition 1 (Wardrop Equilibrium [1]). A population dis-
tribution over time-state-action triplets, {y?tsa}t∈[T ],s∈S,a∈A
is an MDP Wardrop equilbrium for the corresponding
MDPCG, if for any (s, t), y?tsa > 0 implies Qtsa ≥
Qtsa′ ∀a′ 6= a, a′ ∈ A.

Intuitively, definition 1 amounts to the fact that at every
state and time, population members only choose actions
that are optimal. When game rewards satisfy assumption 1,
MDPCG can be characterized as a potential game.

Definition 2 (Potential Game [1], [32]). We say that the
MDPCG associated with rewards r(y) is a potential game
if there exists a continuously differentiable function F such
that ∂F/∂ytsa = rtsa(y).

In the specific case when the rewards have form (1), we
can use the potential function

F (y) =
∑
t∈T

∑
s∈S

∑
a∈A

∫ ytsa
0

`tsa(x) dx (3)

As shown in [1, Theorem 1.3] given a potential function
F (y), the equilibrium to the finite horizon MDPCG can be
found by solving the following optimization problem for an
initial population distribution p.

max
y

F (y)

s.t.
∑
a∈A

yt+1,sa =
∑
s′∈S

∑
a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1],∑
a∈A

y1sa = ps, ∀ s ∈ S,

ytsa ≥ 0, ∀ s ∈ S, a ∈ A, t ∈ [T ]

The proof that the optimizer of (4) is a Wardrop equilibrium
relies on the fact that the Q-value functions (2) are encoded
in the KKT optimality conditions of the problem. The equi-
librium condition (Definition 1) is then specifically derived
from the complementary slackness condition [1]. When F (y)
has form (3) and Assumption 1 is satisfied, F (y) is strictly
concave, and MDPCG (4) has a unique Wardrop equilibrium.

IV. CONSTRAINED MDPCG

In this section, we analyze the problem of shifting the
game equilibrium by augmenting players’ reward functions.
In Section IV-A, we show that introducing constraints cause
the optimal population distribution to obey Wardrop equi-
librium for a new set of Q-value functions. Section IV-
B outlines the Frank Wolfe numerical method for solving
a constrained MDPCG as well as provides a population
behavioural interpretation for the numerical method.

A. Planning Perspective: Model and Constraints

The Wardrop equilibrium of an MDP congestion game is
given by (4). The planner may use additional constraints to
achieve auxiliary global objectives. For example, in a city’s
traffic network, certain roads may pass through residential
neighbourhoods. A city planner may wish to artificially limit
traffic levels to ensure residents’ wellbeing.
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We consider the case where the social planner wants the
equilibrium population distribution to satisfy constraints of
the form

gi(y) ≥ 0 ∀i ∈ I (5)

where gi are continuously differentiable concave functions.
The social planner cannot explicitly constrain players’ be-

haviour, but rather seeks to add incentive functions {f itsa}i∈I
to the reward functions `(y) in order to shift the equilibrium
to be within the constrained set defined by (5). The modified
rewards have form

r̄tsa(y) = rtsa(y) +
∑
i∈I

f itsa(y) (6)

To determine the incentive functions, the social planner first
solves the constrained optimization problem

max
y

F (y)

s.t.
∑
a∈A

yt+1,sa =
∑
s′∈S

∑
a∈A

Ptss′ayts′a, ∀ t ∈ [T − 1],∑
a∈A

y1sa = ps, ∀ s ∈ S

ytsa ≥ 0, ∀ s ∈ S, a ∈ A, t ∈ [T ]

gi(y) ≥ 0, ∀ i ∈ I (7a)

and then computes the incentive functions as

f itsa(y) = (τ i)?
∂gi

∂ytsa
(y) (8)

where {(τ i)? ∈ R+}i∈I are the optimal Lagrange multipliers
associated with the additional constraints (5).

The following theorem shows that the Wardrop equilib-
rium of the MDPCG with modified rewards in (6) satisfies
the new constraints in (7a).

Theorem 1. Let the MDPCG (4) with rewards r(y) be a po-
tential game with a strictly concave potential function F (y).
If y? is a Wardrop equilibrium for a modified MDPCG with
reward functions r̄tsa(y) = rtsa(y) +

∑
i∈I(τ i)? ∂gi

∂ytsa
(y),

then y? also solves (7) and thus satisfies the additional
constraints (5).

Proof. The Lagrangian of (7) is given by

L(y, µ, V, τ) = F (y)−∑
tsa
µtsaytsa +

∑
i

τ igi(y)

+
T−1∑
t=1

∑
s

(∑
as′
Pt,ss′ayt,s′a −

∑
a
yt+1,sa

)
Vt+1,s

+
∑
s

(
ps −

∑
a
y1sa

)
V1s

(9)

and note that by strict concavity, sup
y≥0

inf
µ≥0,V,τ≥0

L(y, µ, V, τ)

has unique solution, which we denote by (y?, µ?, V ?, τ?).
We then note that

F̄ (y) = F (y) +
∑
i

(τ i)?gi(y) (10)

is a potential function for the MDPCG with desired modified
rewards. Since F (y) is strictly concave, gi(y) is concave, and
(τ i)? is positive, F̄ (y) is strictly concave. The equilibrium

for the MDPCG with modified rewards can be computed by
solving (7) with F̄ (y) as the objective.

The Lagrangian for (7) with F̄ (y) is given by L̄(y, µ, V ) =
L(y, µ, V, τ?). Again by strict concavity,

sup
y≥0

inf
µ≥0,V

L̄(y, µ, V ) = sup
y≥0

inf
µ≥0,V

L(y, µ, V, τ?)

has a unique solution which we denote as (ȳ?, µ̄?, V̄ ?). It
follows that ȳ? = y?. Thus the game equilibrium with
modified rewards, ȳ? satisfies desired constraints.

For the social planner, Theorem 1 has the following
interpretation: in order to impose constraints of form (5) on
a MDPCG, the planner could solve the constrained game (7)
for optimal dual variables τ? and offer incentives of form (8).

B. Population Perspective: Numerical Method

After the social planner has offered incentives, the popu-
lation plays the Wardrop equilibrium defined by modified
rewards (6); this equilibrium can be computed using the
Frank Wolfe (FW) method [23], given in Algorithm 3, with
known optimal variables {τ?i }.

FW is a numerical method for convex optimization prob-
lems with continuously differentiable objectives and compact
feasible sets [33], including routing games. One advantage of
this learning paradigm is that the population does not need
to know the function r(·). Instead, they simply react to the
realized rewards of previous game at each iteration. It also
provides an interpretation for how a Wardrop equilibrium
might be asymptotically reached by agents in MDPCG in an
online fashion.

Assume that we have a repeated game play, where players
execute a fixed strategy determined at the start of each
game. At the end of each game k, rewards of game k
based on yktsa are revealed to all players. FW models the
population as having two sub-types: adventurous and con-
servative. Upon receiving reward information `tsa(yktsa), the
adventurous population decides to change its strategy while
the conservative population does not. To determine its new
strategy, the adventurous population uses value iteration on
the latest reward information—i.e. Algorithm 1—to compute
a new optimal policy. Their resultant density trajectory is
then computed using Algorithm 2. The step size at each
iteration is equivalent to the fraction of total population who
switches strategy. The stopping criteria for the FW algorithm
is determined by the Wardrop equilibrium notion—that is, as
the population iteratively gets closer to an optimal strategy,
the marginal increase in potential decreases to zero.

Algorithm 1 Value Iteration Method

Input: r, P .
Output: {π?ts}t∈[T ], s∈S

for t = T, . . . , 1 do
Vts = max

a∈A
Qtsa, π?ts = argmax

a∈A
Qtsa, ∀ s ∈ S .

Eqn. (2)
end for
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Algorithm 2 Retrieving density trajectory from a policy

Input: P , p, π.
Output: {dtsa}t∈[T ],s∈S,a∈A

dtsa = 0, ∀ t ∈ [T ], s ∈ S, a ∈ A
d1sπ1s

= ps, ∀s ∈ S
for t = 2, . . . , T do

dts(πts) =
∑
a∈A

∑
s′∈S

Pt−1,ss′adt−1,s′a, ∀ s ∈ S
end for

Algorithm 3 Frank Wolfe Method with Value Iteration

Input: ¯̀, P , ps, N , ε.
Output: {y?tsa}t∈[T ],s∈S,a∈A.

y0 = 0 ∈ RT×|S|×|A|
for k = 1, 2, . . . , N do

cktsa = ¯̀
tsa(yk), ∀ t ∈ [T ], s ∈ S, a ∈ A

πts = VALUEITERATION(ck, P ) . Alg. 1
dk = RETRIEVEDENSITY(P, ps, πts) . Alg. 2
yk = (1− 2

k+1 )yk−1 + 2
k+1d

k

Stop if∑
t∈[T ]

∑
s∈S

∑
a∈A

(
cktsa − ck−1tsa

)2
≤ ε

end for

In contrast to implementations of FW in routing game
literature, Algorithm 3’s descent direction is determined by
solving an MDP [34, Section 4.5] as opposed to a shortest
path problem from origin to destination [5, Sec.4.1.3]. Algo-
rithm 3 is guaranteed to converge to a Wardrop equilibirum if
the predetermined step sizes decrease to zero as a harmonic
series [23]—e.g., 2

k+1 . FW with predetermined step sizes
has been shown to have sub-linear worst case convergence
in routing games [33]. On the other hand, replacing fixed step
sizes with optimal step sizes found by a line search method
leads to a much better convergence rate.

V. NUMERICAL EXAMPLE

In this section, we apply the techniques developed in
Section IV to model competition among ride-sharing drivers
in metro Seattle. Using the set up described in Section V-
A, we demonstrate how a ride-share company takes on the
role of social planner and shifts the equilibrium of the driver
game in the following two scenarios: 1) Ensuring minimum
driver density in various neighborhoods (Section V-B), 2)
Improving the social welfare (Section V-C).

A. Ride-sharing Model

Consider a ride-share scenario in metro Seattle, where
rational ride-sharing drivers seek to optimize their profits
while repeatedly working Friday nights. Assume that the
demand for riders is constant for each game play. The time
step is taken to be 15 minutes, i.e. the average time for a
ride, after which the driver needs to take a new action.

We model Seattle’s individual neighbourhoods as an ab-
stract set of states, s ∈ S , as shown in Fig 1. Adjacent
neighbourhoods are connected by edges. The following states

Fig. 1: State representation of metro Seattle.

are characterized as residential: ‘Ballard’ (3), ‘Fremont’
(4), ‘Sand Point’ (8), ‘Magnolia’ (9), ‘Green Lake’ (11),
‘Ravenna’ (12). Assume drivers have equal probabilities of
starting from any of the residential neighbourhoods.

Because drivers cannot see a rider’s destination until after
accepting a ride, the game has MDP dynamics. At each
state s, drivers can choose from two actions. ar, wait for
a rider in s, or asj , transition to an adjacent state sj . When
choosing ar, we assume the driver will eventually pick up a
rider, though it may take more time if there are many drivers
waiting for riders in that neighborhood. Longer wait times
decrease the driver’s reward for choosing ar.

On the other hand, there are two possible scenarios when
drivers choose asj . The driver either drives to sj and pays
the travel costs without receiving a fare, or picks up a
rider in si. We allow the second scenario with a small
probability to model the possibility of drivers deviating from
their predetermined strategy during game play.

The probability of transition for each action at state si
are given below, where Ni denotes the set of neighbouring
states, and |Ni| the number of neighbouring states for state
si.

P (s, a, si) =



1
|Ni|+1 , if s ∈ Ni, a = ar

1
|Ni|+1 , if s = si, a = ar
0.1
|Ni| , if s ∈ Ni, s 6= sj , a = asj
0.9, if s ∈ Ni, s = sj , a = asj
0, otherwise

The reward function for taking each action is given by

`tsa(ytsa) = Es′
[
mts′s − ctrav

ts′s

]
− cwait

t · ytsa
=
∑
s′
Pts′sa [mts′s − ctrav

ts′s]− cwait
t · ytsa

where mts′s is the monetary cost for transitioning from state
s to s′, ctrav

ts′s is the travel cost from state s to s′, cwait
t is the

coefficient of the cost of waiting for a rider. We compute
these various parameters as

mts′s =
(
Rate

)
·
(
Dist

)
(11a)

ctrav
ts′s = τ

(
Dist

)︸ ︷︷ ︸
mi

(
Vel
)−1︸ ︷︷ ︸

hr/mi

+
(

Fuel
Price

)︸ ︷︷ ︸
$/gal

(
Fuel
Eff

)−1︸ ︷︷ ︸
gal/mi

(
Dist

)︸ ︷︷ ︸
mi

(11b)
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Fig. 2: Optimal state density of (7).

cwait
ta =


τ ·
(

Customer
Demand Rate︸ ︷︷ ︸

rides/hr

)−1
, if a = ar

εtsas′ , if a = a′s

(11c)

where εtsas′ is the congestion effect from drivers who all
decide to traverse from s to s′, and τ is a time-money tradeoff
parameter, computed as

(
Rate·Dave

Time Step

)
, where the average trip

length, Dave, is equivalent to the average distance between
neighbouring states. The values independent of specific tran-
sitions are listed in the Tab. I.

Rate Velocity Fuel Price Fuel Eff τ Dave

$6 /mi 8 mph $2.5/gal 20 mi/gal $27 /hr 1.25 mi

TABLE I: Parameters for the driver reward function.

B. Ensuring Minimum Driver Density

To ensure rider satisfaction, the ride-share company aims
for a minimum driver coverage of 10 drivers in ‘Belltown’,
s = 7, a neighborhood with highly variable rider demand. To
this end, they solve the optimization problem in (7) where
(7a) for t ∈ {3, . . . , T}, s = 7, take on form gi(y) =∑
a ytsa − 10. The modified rewards from Theorem 1 are

given by r̄tsa(y) = `tsa(ytsa) + τ?ts, where each τ?ts is the
optimal dual variable corresponding to each new constraint.

The optimal population distribution in ‘Belltown’ (state
7) and an adjacent neighbourhood, ‘Capitol Hill’ (state 2),
are shown in Fig. 2. The imposed constraints also affect
optimal population distribution of adjacent states, as shown
by the population distribution of Capitol Hill. Note that the
incentive τ?ts is applied to all actions of state s. Furthermore,
if the solution to the unconstrained problem is feasible for
the constrained problem, then τ?ts = 0—i.e. no incentive is
offered. We simulate drivers’ behaviour with Algorithm 3, as
a function of decreasing termination tolerance ε. In Fig. 3,
the result shows that the optimal population distribution from
the FW algorithm converge to Wardrop equilibrium as the
approximation tolerance ε decreases.

C. Increasing Social Welfare

In most networks with congestion effects, the popula-
tion does not achieve the maximum social welfare, which
can be achieved by optimizing (4) with objective J(y) =∑
t∈[T ]

∑
s∈S

∑
a∈A ytsartsa(y). In general, a gap exists

between J(x?) and J(y?), where y? = {y?tsa} is the optimal

0 1000 2000
Iterations

10−3

10−2

10−1

100

||y
ε
−
y
?
|| 2

Fig. 3: Convergence of yε to y? normalized by ‖y?‖2.
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Fig. 4: Constrained user optimal as a function of ε.

solution to (4), and x? = {x?tsa} is the optimal solution to
(4) with objective J(y).

The typical approach to closing the social welfare gap
is to impose mass dependent incentives. An alternative
method, perhaps under-explored, is to impose constraints.
As opposed to congestion dependent taxation methods for
improving social welfare [4], [16], constraint generated tolls
are congestion independent.

We can compare the two distributions and generate up-
per/lower bound constraints with an ε threshold—see Al-
gorithm 4 for constraint selection method. The number of
constraints increases with decreasing ε. Since the objective
function in (4) is continuous in ytsa, as ε approaches zero, the
objective will also approach the social optimal. In Fig. 4, we

Algorithm 4 Constraint Generation

Input: x?, y?.
Output: U = {(ui, t, s, a) ∈ R× [T ]× S ×A}

L = {(li, t, s, a) ∈ R× [T ]× S ×A}
for each s ∈ S, a ∈ A, t ∈ [T ] do

if y?tsa − x?tsa > ε then
(x?tsa, t, s, a)→ U

else if y?tsa − x?tsa < ε then
(x?tsa, t, s, a)→ L

end if
end for

compare the optimal social welfare to the social welfare at
Wardrop equilibrium of the unconstrained congestion game,
modeled in Section (V-A), as a function of the population
size. We use CVXPY [35] to solve the optimization problem.
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social welfare as a function of constraints imposed (bottom).

We utilize Algorithm 4 to generate incentives for the
congestion game. Then, we simulate (7) and compare the
game output to the social objective in Fig. 4. For a population
size of 3500, there is a discernible gap between the social
and user-selected optimal values. Note that with only 200
(t, s, a) constraints, the gap between the social optimal and
the user-selected equilibrium is already less than 5%.

An interesting question is how much of the total market
worth is affected by the incentives. In Fig. 5, we demon-
strate how payouts vary based on the number of constraints
imposed. Let (·)− = min{0, ·} and (·)+ = max{0, ·}.
The total payout from the drivers to the social planner and
vice versa are given by hdriv =

∑
tsa ytsa|(τtsa)−| and

hplan =
∑
tsa ytsa(τtsa)+. The net revenue the social planner

receives from tolls is hnet =
∑
tsa ytsa(τtsa) = hplan − hdriv.

Fig. 5(b) shows how these quantities change as the total
number of constraints is increased.

VI. CONCLUSIONS

We presented a method for adjusting the reward functions
of a MDPCG in order to shift the Wardrop equilibrium
to satisfy population mass constraints. Applications of this
constraint framework have been demonstrated in a ride-share
example in which a social planner aims to constrain state
densities or to maximize overall social gain without explicitly
constraining the population. Future work include developing
online methods that updates incentives corresponding to
constraints while the game population adjusts its strategy.
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