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Disturbance Decoupling for Gradient-Based
Multi-Agent Learning With Quadratic Costs

Sarah H. Q. Li , Graduate Student Member, IEEE , Lillian Ratliff , Member, IEEE ,
and Behçet Açıkmeşe , Senior Member, IEEE

Abstract—Motivated by applications of multi-agent learn-
ing in noisy environments, this letter studies the robust-
ness of gradient-based learning dynamics with respect to
disturbances. While disturbances injected along a coordi-
nate corresponding to any individual player’s actions can
always affect the overall learning dynamics, a subset of
players can be disturbance decoupled—i.e., such players’
actions are completely unaffected by the injected distur-
bance. We provide necessary and sufficient conditions to
guarantee this property for games with quadratic cost func-
tions, which encompass quadratic one-shot continuous
games, finite-horizon linear quadratic (LQ) dynamic games,
and bilinear games. Specifically, disturbance decoupling is
characterized by both algebraic and graph-theoretic con-
ditions on the learning dynamics, the latter is obtained by
constructing a game graph based on gradients of players’
costs. For LQ games, we show that disturbance decoupling
imposes constraints on the controllable and unobservable
subspaces of players. For two player bilinear games, we
show that disturbance decoupling within a player’s action
coordinates imposes constraints on the payoff matrices.
Illustrative numerical examples are provided.

Index Terms—Game theory, machine learning, decentral-
ized control.

I. INTRODUCTION

AS THE application of learning in multi-agent settings
gains traction, game theory has emerged as an infor-

mative abstraction for understanding the coupling between
algorithms employed by individual players (see, e.g., [1]–[3]).
Due to scalability, a commonly employed class of algorithms
in both games and modern machine learning approaches to
multi-agent learning is gradient-based learning, in which play-
ers update their individual actions using the gradient of their
objective with respect to their action. In the gradient-based
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learning paradigm, continuous quadratic games stand out as
a benchmark due to their simplicity and ability to exemplify
state-of-the-art multi-agent learning methods such as policy
gradient and alternating gradient-descent-ascent [4].

Despite the resurgence of interest in learning in games,
a gap exists between algorithmic performance in simulation
and physical application in part due to disturbances in mea-
surements [5]. Robustness to environmental noise has been
analyzed in a wide variety learning paradigms [6], [7]. Most
analysis focuses on independent and identically distributed
stochastic noise drawn from a stationary distribution.

In contrast, we study adversarial disturbance without any
assumptions on its dynamics or bounds on its magnitude.
Though some work exists on the effects of bounded adversarial
disturbance in multi-agent learning [8], there is limited under-
standing of how gradient disturbance propagates through the
network structure as determined by the coupling of the play-
ers’ objectives. Does gradient-based learning fundamentally
contribute to or reduce the propagation of disturbance through
player actions? Our analysis aims to answer this question for
gradient-based multi-agent learning dynamics. The insights we
gain provide desiderata to support algorithm synthesis and
incentive design, and will lead to improved robustness of
multi-agent learning dynamics.

Contributions: The main contribution is providing a novel
graph-theoretical perspective for analyzing disturbance decou-
pling in multi-agent learning settings. For quadratic games,
we obtain a necessary and sufficient condition, which can
be verified in polynomial time, that ensures complete decou-
pling between the corrupted gradient of one player and the
learned actions of another player, stated in terms of alge-
braic and graph-theoretic conditions. The latter perspective
leads to greater insight on the types of cost coupling struc-
tures that enjoy disturbance decoupling, and hence, provides a
framework for designing agent interactions, e.g., via incentive
design or algorithm synthesis. Applied to LQ games, a bench-
mark for multi-agent policy gradient algorithms, we show that
disturbance decoupling enforces necessary constraints on the
controllable subspace in relation to the unobservable subspace
of individual players. Applied to bilinear games, we show that
disturbance decoupling enforces necessary constraints on the
players’ payoff matrices.
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II. RELATED WORK

We study gradient-based learning for N–player quadratic
games with continuous cost functions and action sets.
Convergence guarantees for gradient-based learning are stud-
ied from numerous perspectives including game theory [1],
[3], [9], control [10], and machine learning [2], [11].

Convergence guarantees for gradient-based learning dynam-
ics under stochastic noise are studied in [2], [3], [11]. Despite
being an important property to understand for adversarial dis-
turbance, how non-stochastic noise propagates through the
player network has no guarantees.

Our analysis draws on geometric control [12]–[14]. In [12],
algebraic conditions for disturbance decoupling within a sin-
gle dynamical system is given. In [14], disturbance decoupling
for a single structured dynamical system is studied with
frequency-based techniques. In this letter, we provide both
the algebraic and graph-theoretic conditions for disturbance
decoupling of coupled dynamical systems in gradient-based
multi-agent learning.

III. CONTINUOUS GAMES AND THE GAME

GRAPH MODEL

Let [N] = {1, 2, . . . , N} denote the index set where N ∈ N.
For a function f ∈ Cr(Rn,R) with r ≥ 2, Dif = ∂f /∂xi is the
partial derivative with respect to xi.

Consider an N-player continuous game (f1, . . . , fN) where
for each i ∈ [N], fi ∈ Cr(Rn,R) with r ≥ 2 is player i’s cost
function and R

n = R
n1 × . . . × R

nN is the joint action space,
with R

ni denoting player i’s action space and n = ∑N
i=1 ni.

Each player’s goal is to select an action xi ∈ R
ni to minimize

its cost fi : Rn → R given the actions of all other players. That
is, player i seeks to solve the following optimization problem:

min
xi∈Rni

fi(x1, . . . , xi, . . . , xN︸ ︷︷ ︸
:=x

). (1)

One of the most common characterizations of the outcome of
a continuous game is a Nash equilibrium.

Definition 1 (Nash Equilibrium): For an N–player continu-
ous game (f1, . . . , fN), a joint action x� = (x�

1, . . . , x�
N) ∈ R

n

is a Nash equilibrium if for each i ∈ [N],

fi(x
�) ≤ fi(x

�
1, . . . , x�

i−1, xi, x�
i+1, . . . , x�

N), ∀ xi ∈ R
ni .

A. Gradient-Based Learning

We consider a class of simultaneous play, gradient-based
multi-agent learning techniques such that at iteration k, player
i receives hi(xk) from an oracle to update its action as follows:

xk+1
i = xk

i − γihi(x
k
1, . . . , xk

N), (2)

where γi > 0 is player i’s step size,

hi(x
k) = Difi(x

k) + dk
i (3)

is player i’s gradient evaluated at the current joint action xk

and affected by a player-specific, arbitrary additive disturbance
dk

i ∈ R
ni . In the setting we analyze, dk

i can modify xk
i to any

other action within R
ni .

Under reasonable assumptions on step sizes—e.g., relative
to the spectral radius of the Jacobian of hi in a neighborhood
of a critical point—it is known that the undisturbed dynamics
converge [2], [3]. While such a guarantee cannot be given for
arbitrary disturbances as considered in this letter, we provide
conditions under which a subset of players still equilibriates
and follows the undisturbed dynamics.

B. Quadratic Games

For an N–player continuous game (f1, . . . , fN), behavior of
gradient-based learning around a local Nash equilibrium can
be approximated by linearizing the learning dynamics, where
the linearization corresponds to a quadratic game.

Definition 2 (Quadratic Game): For each i ∈ [N], fi : Rn →
R is defined by

fi(x) = x�
i Pixi + x�

i (
∑

j 	=i
Pijxj + ri). (4)

Quadratic games encompass potential games [15] with Pij =
P�

ji , and zero sum games [16] with Pij = −P�
ji . We give further

examples of quadratic games in Section III-D.

C. Game Graph

To highlight how an individual player’s action updates
depend on others’ actions, we associate a directed graph to
the gradient-based learning dynamics defined in (2).

We consider a directed graph ([N], E), where [N] is the
index set for the nodes in the graph, and E is the set of edges.
Each node i ∈ [N] is associated with action xi of the ith player.
A directed edge (j, i) points from j to i and has weight matrix
Wij ∈ R

ni×nj , such that (j, i) ∈ E if Wij 	= 0 element-wise. For
each node i, we assume the self loop edge (i, i) always exists
and has weight Wii ∈ R

ni×ni . The composite matrix W ∈ R
n×n

with entries Wij is the adjacency matrix of the game graph.
On a game graph, we define a path p = (i, v1, . . . , vk−1, j)

as a sequence of nodes connected by edges. The set of paths
Pk

ij includes all paths starting at i and ending at j, traversing
k + 1 nodes in total. For a path p = (i, v1, . . . , vk−1, j), we
define its path weight as the product of consecutive edges on
the path, given by Wj,vk−1 . . . Wv1,i = ∏k−1

l=0 Wvl+1,vl .
In the absence of disturbances di, the update in (2) for a

quadratic game reduces to

xk+1 = Wxk − �r̄, (5)

where r̄ = [
r�

1 . . . r�
N

]�
, Wii = Ini − γiPi, Wij = −γiPij,

and � = blkdiag(γ1In1, . . . , γNInN ).

D. Subclasses of Games Within Quadratic Games

To both illustrate the breadth of quadratic games and pro-
vide exemplars of the game graph concept, we describe two
important subclasses of games and their game graphs.

1) Finite Horizon LQ Game: Given initial state z0 ∈ R
m

and horizon T , each player i in an N-player, finite-horizon
LQ game selects an action sequence (u0

i , . . . , uT−1
i ) with ut

i ∈
R

mi in order to minimize a cumulative state and control cost
subjected to state dynamics:

min
ut

i∈Rmi

1
2

(
T∑

t=0

(zt)�Qiz
t +

T−1∑

t=0

(ut
i)

�Riu
t
i

)
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s.t. zt+1 = Azt +
N∑

i=1

Biu
t
i, t = 0, . . . , T − 1. (6)

The LQ game defined by the collection of optimization
problems (6) for each i ∈ [N] is equivalent to a one-
shot quadratic game in which each player selects Ui =
[(u0

i )
�, . . . , (uT−1

i )�]� ∈ R
ni with ni = Tmi, in order to

minimize their cost fi(U) defined by

1
2 (

N∑

j=1

GjUj + Hz0)�Q̄i(

N∑

j=1

GjUj + Hz0) + 1
2 U�

i R̄iUi,

where U = (U1, . . . , UN) is the joint action profile, and the
cost matrices are given by Q̄i = blkdiag{Qi, . . . , Qi},

Gi =

⎡

⎢
⎢
⎢
⎣

0 . . . 0
Bi . . . 0
...

. . .
...

AT−1Bi . . . Bi

⎤

⎥
⎥
⎥
⎦

, H =
⎡

⎢
⎣

I
...

AT

⎤

⎥
⎦, (7)

and R̄i = blkdiag{Ri, . . . , Ri}. This follows precisely
from observing that the dynamics are equivalent to Z =∑N

i=1 GiUi + Hz0 where Z = [(z0)�, . . . , (zT)�]�. From here,
it is straight forward to rewrite the optimization problem in (6)
as minUi fi(U). The LQ game is a potential game if and only
if Qi = Qj and Ri = Rj for all i, j ∈ [N].

LQ Game Graph: Suppose each player uses step size γi.
Since, Difi(U) is given by

(G�
i Q̄iGi + R̄i)Ui +

∑

j 	=i

G�
i Q̄i(GjUj + Hz0), (8)

the learning dynamics (5) are equivalent to

Uk+1 = WUk − �[Q̄1G1, . . . , Q̄NGN]�Hz0, (9)

where W = In−M, with M ∈ R
n×n a blockwise matrix having

entries Mij = γiG�
i Q̄iGj if i 	= j and Mij = γi(G�

i Q̄iGi + R̄i)

otherwise.
2) Bilinear Games: Bilinear games are an important class

of games. For instance, a number of game formulations in
adversarial learning have a hidden bilinear structure [17]. In
evaluating and selecting hyper-parameter configurations in so-
called test suites, pairwise comparisons between algorithms
are formulated as bimatrix games [18], [19].

Formally, a two player bilinear game,1 a subclass of con-
tinuous quadratic games, is defined by f1(x1, x2) = x�

1 Ax2 and
f2(x1, x2) = x�

1 B�x2 where A ∈ R
n1×n2 and B ∈ R

n2×n1 and
xi ∈ R

ni . Common approaches to learning in games [17], [20],
simultaneous and alternating gradient descent both correspond
to a linear system.

Game graph for simultaneous gradient play: Players update
their strategies simultaneously by following the gradient of
their own cost with respect to their choice variable:

xk+1
1 = xk

1 − γ1Axk
2, xk+1

2 = xk
2 − γ2Bxk

1 (10)

1The bilinear game formulation and corresponding game graph for different
gradient-based learning rules easily extend to an N-player setting, however the
results in Section IV are presented for two player games.

The simultaneous gradient play game graph is given by

Ws =
[

I −γ1A
−γ2B I

]

. (11)

Game graph for alternating gradient play: In zero-sum
bilinear games, it has been shown that alternating gradient play
has better convergence properties [20]. Alternating gradient
play is defined by

xk+1
1 = xk

1 − γ1Axk
2, xk+1

2 = xk
2 − γ2Bxk+1

1 (12)

Examining the second player’s update, we see that xk+1
2 = (I+

γ1γ2BA)xk
2 −γ2Bxk

1. The game graph in this case is defined by

Wa =
[

I −γ1A
−γ2B I + γ1γ2BA

]

. (13)

Remark 1: Convergence of (10) and boundedness of (12)
depend on choosing appropriate step sizes γ1 and γ2 [3], [20].
We consider disturbance decoupling for settings such as these
where the undisturbed dynamics are convergent.

IV. DISTURBANCE DECOUPLING ON GAME GRAPH

In this section, we derive the necessary and sufficient con-
dition that ensures decoupling of gradient disturbance from
the learning trajectory of a subset of players. We emphasize
that the condition holds for disturbances with arbitrary magni-
tudes and functions. This is a useful result because it provides
guarantees on both the equilibrium behavior and the learning
trajectory under adversarial disturbance.

Definition 3 (Complete Disturbance Decoupling): Given
initial joint action x0 ∈ R

n, game costs (f1, . . . , fN), step sizes
� ∈ R

n×n, suppose that player i’s gradient update is corrupted
as in (3), then for player j 	= i, action xj is decoupled from
the disturbance in player i’s gradient if the uncorrupted and
corrupted dynamics, given respectively by

xk+1 = Wxk − �r̄, yk+1 = Wyk − �r̄ − �dk (14)

result in identical trajectories for player j when y0 = x0. That
is, yk

j = xk
j holds for all k ≥ 0, dk ∈ Di, where

Di = {d = [d1, . . . , dN] ∈ R
n | dj = 0,∀ j 	= i}.

A. Algebraic Condition

We first derive an algebraic condition on the joint action
space for disturbance decoupling. Define M⊥ = {x ∈
R

n | x�x̃ = 0, ∀ x̃ ∈ M} and let im(A) = {Ax | x ∈ R
n}

denote the image of A ∈ R
m×n.

Proposition 1: Consider an N-player quadratic game
(f1, . . . , fN) as in Definition 2 under learning dynamics as
given by (2), where player i experiences gradient disturbance
as given by (3). Let S(i) = {x = [x1, . . . , xN] ∈ R

n | xj = 0,

∀ j 	= i} be the joint action subset. For player j 	= i, the
following statements are equivalent:

(i) Player j is disturbance decoupled from player i.
(ii) Wkv ∈ S(j)⊥, ∀ v ∈ S(i), ∀ 0 ≤ k < n.

(iii) im(WkE) ⊆ im(Y), ∀ 0 ≤ k < n, where E ∈ R
n×ni and

Y ∈ R
n×(n−nj) are matrices such that im(E) = S(i) and

im(Y) = S(j)⊥.
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Proof: For a quadratic game (f1, . . . , fN), the learning
dynamics without and with disturbances reduce to the equa-
tions in (14). Given initial joint action x0,

xk = Wkx0 − [
Wk−1 . . . W0

]
�
[
r̄� . . . , r̄�]�,

yk = xk − [
Wk−1 . . . W0

]
�
[
(d0)� . . . , (dk−1)�

]�
.

Then, Definition 3 is equivalent to
∑M−1

l=0 WM−l−1dl ∈ S(j)⊥
satisfied for M ≥ 1 and dl ∈ S(i). Since the condition holds
for all M ≥ 1, it is equivalent to Wkdl ∈ S(j)⊥ for all k ≥ 0
and dl ∈ S(i). This is then equivalent to Wkdl ∈ S(j)⊥ for all
0 ≤ k < n and dl ∈ S(i). To see this equivalence, consider
the following result from Cayley-Hamilton theorem, Wk =∑n−1

l=0 αlWl for some αl ∈ R. Thus, for k ≥ n and any d ∈ S(i),
Wkd = ∑n−1

l=0 Wlαld = ∑n−1
l=0 Wld̂l where d̂l = αld ∈ S(i)

for l = 0, . . . , n − 1, which implies that Wkd ∈ S(j)⊥. This
concludes the equivalence.

Finally, we note that (iii) is a restatement of (ii).
Furthermore, (iii) can be verified in polynomial time.

Remark 2: In connection to geometric control theory, con-
dition (iii) of Proposition 1 is equivalent the fact that
im([E, . . . , Wn−1E]), the smallest W-invariant subspace con-
taining im(E), must be a subset of S(j)⊥ [12, Th. 4.6].

B. Graph-Theoretic Condition

Next we derive the graph-theoretic condition on the joint
action space for disturbance decoupling.

Theorem 1: Consider an N-player quadratic game
(f1, . . . , fN) as in Definition 2 under learning dynamics
as given by (2), where player i experiences gradient distur-
bance as given by (3). Player j 	= i is disturbance decoupled
if and only if the path weights of paths with length k satisfy

∑

p∈Pk
ij

k−1∏

l=0

Wvl+1,vl = 0, ∀ 0 < k < n, (15)

where (vl, vl+1) denotes consecutive nodes on path p =
(i, v1, . . . , vk−1, j).

Proof: The result follows from equivalence between
Proposition 1 condition (ii) and (15). Note that x ∈ S(i) is
equivalent to x� = 0 for all � 	= i, and Wkx ∈ S(j)⊥ is equiv-
alent to (Wkx)j = 0 for all n > k ≥ 0. We prove the result
by induction. For k = 0, (W0x)j = 0 ∀ x ∈ S(i) holds if and
only if i 	= j. For k > 0, (Wkx)j = 0 ∀ x ∈ S(i) is equivalent
to i 	= j and (Wk)ji = 0. Suppose that for i, j ∈ [N], (Wk)ji

is the sum of path weights over all paths of length k, origi-
nating at i and ending at j, then (Wk+1)ji is the sum of path
weights over all paths of length k + 1, originating at i and
ending at j. Let Wk = M, then (Wk+1)ji = ∑

q∈[N] MjqWqi,
where MjqWqi 	= 0 if and only if the sum of path weights of
length k from q to j is nonzero and there is an edge from i
to q. Furthermore, MjqWqi is the sum of path weights over
all paths of length k + 1 from i to j each of which contains
vk = q. Since we sum over q ∈ [N], we conclude that (Wk+1)ji

is the sum of all paths weights of length k +1 from i to j, i.e.,
(i, v1, . . . , vk, j) ∈ Pk+1

ij .
The concept of disturbance decoupling is quite counter-

intuitive: any change in player i’s action does not affect player

Fig. 1. A simple game graph between four players.

j’s action, despite fj being implicitly dependent on xi through
the network of player cost functions. As we see from the proof
of Theorem 1, this situation arises when the dependencies
‘cancel’ each other out, i.e., the sum of path weights from
i to j is always zero for equally lengthed paths.

Example 1 (Disturbance Decoupled Players): Consider a
4 player quadratic game where xi ∈ R and the game
graph is given by Figure 1. Edge weights α, β, γ , and
δ ∈ R, while each self loop has weight wi > 0.
Paths of length k ≤ 4 from player 1 to player 4 are
enumerated as P1

14 = {∅}, P2
14 = {(1, 2, 4), (1, 3, 4)},

and P3
14 = {(1, 1, 2, 4), (1, 1, 3, 4), (1, 2, 2, 4), (1, 3, 3, 4),

(1, 2, 4, 4), (1, 3, 4, 4)}. To satisfy Theorem 1, the sum of path
weights for each Pk

14 must be 0 for 0 < k < 4. There are
no paths of length one, summation for k = 2 implies the
criteria αγ + βδ = 0, and summation for k = 3 implies
the criteria (w1 + w2 + w4)αγ + (w1 + w3 + w4)βδ = 0.
If w2 = w3, αγ + βδ = 0 is necessary and sufficient for
disturbance decoupling between player 1 and player 4.

Remark 3: Disturbance decoupling is a structural property
of the game in terms of disturbance propagation and atten-
uation. An open research problem is linking this structural
property to robust decision making under uncertainties in cost
parameters Pi, Pij and step sizes γi.

The following corollary specializes to the class of potential
games [15], which arise in many applications [21]–[23].

Corollary 1: Consider an N-player quadratic potential
game under learning dynamics as given by (2), where player
i experiences gradient disturbance as given by (3). Player i is
disturbance decoupled from player j 	= i if and only if player
j is also disturbance decoupled from player i.

Proof: In a potential game graph, Wij = W�
ji . Therefore, a

path p with path weight Wj,vk−1 . . . Wv1,i exists from i to j if
and only if a path p′ with path weight Wi,v1, . . . , Wvk−1,j exists
from j to i. Therefore, (15) holds from player i to player j if
and only if it holds from player j to player i.

Corollary 2: Consider an N-player finite horizon LQ game
as in (6) under learning dynamics as given by (9), where
player i experiences gradient disturbance as given by (3), if
disturbance decoupling holds between player j and gradient
disturbance from player i, then

⎡

⎢
⎣

B�
j
...

B�
j (A�)T−1

⎤

⎥
⎦Qj

[
Bi · · · AT−1Bi

] = 0. (16)

If Qj is positive definite and T ≥m, the controllable subspace
of (Ã, B̃i) must lie in the unobservable subspace of (B̃�

j , Ã�)

where Ã = Q1/2
j AQ−1/2

j , B̃i = Q1/2
j Bi, and B̃j = Q1/2

j Bj.
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Proof: For player j to be disturbance decoupled from
player i, edge (i, j) cannot exist, i.e., −γjG�

j Q̄jGi = 0 from (7).
Expanding G�

j Q̄jGi = M ∈ R
nj×ni , Mpq ∈ R

mj×mi is given

by
∑T−1

t=min{p,q}B�
j (A�)t−pQjAt−qBi. We unwrap these con-

ditions starting from p = T − 1, q = T − 1; in this
case Mpq = B�

j QjBi = 0 is necessary. Then we consider
MT−2,T−2 = B�

j A�QjABi + B�
j QjBi = 0, which implies that

B�
j A�QjABi is necessary. Subsequently, this implies that all

B�
j (A�)tQjAtBi = 0 is necessary for t ∈ [0, T). Similarly,

we note that MT−1,q = B�
j QjAqBi = 0 and Mp,T−1 =

B�
j (A�)pQjBi = 0. From these we can use the rest of M to

conclude that B�
j (A�)pQjAqBi = 0 for any p, q ∈ [0, T). This

condition is equivalent to (16).
We apply Theorem 1 to two player bilinear games and prove

a necessary condition for disturbance decoupling between
different coordinates of each player’s action space that is
independent of players’ step sizes.

Corollary 3: Consider a two player bilinear game under
learning dynamics (10) and (12), where coordinates x1,i and
x2,i experience gradient disturbance as given by (3). If j 	= i
and coordinate x1,j is disturbance decoupled from coordinate
x1,i, (A, B) must satisfy

∑n2
�=1 b�iaj� = 0, where apq and bpq

denote the (p, q)th elements of A and B, respectively. Similarly,
if j 	= i and coordinate x2,j is disturbance decoupled from
coordinate x2,i, (A, B) must satisfy

∑n1
�=1 bj�a�i = 0.

Proof: We construct games played by n1 + n2 players
with actions {x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2} and whose game
graphs are identical to Ws (11) and Wa (13). First consider
disturbance decoupling of x1,j from x1,i. In both learning
dynamics, {x1,1, . . . , x1,n1} do not have any edges between
players. Therefore, paths between x1,i and x1,j with length
2 is given by P = {(x1,i, x2,�, x1,j) | � ∈ [n2]}. We sum
path weights over P to obtain

∑n2
�=1 b�iaj� = 0 for distur-

bance decoupling of x1,j from x1,i in (10) and (12). A similar
argument follows for disturbance decoupling of x2,j from x2,i

in (10). For disturbance decoupling of x2,j from x2,i in (12), we
note that a edge from x2,i to x2,j exists with weight γ1γ2(BA)ji

when j 	= i. Disturbance decoupling requires γ1γ2(BA)ji = 0,
therefore

∑n1
�=1 bj�a�i = 0.

Corollary 4: Consider a two player bilinear game under
learning dynamics (10) and (12), where coordinates x1,i and
x2,i experience gradient disturbance as given by (3). If coordi-
nate x2,j is disturbance decoupled from coordinate x1,i, (A, B)

must satisfy bji = 0 and
∑n2

q=1 bqi
∑n1

�=1 a�qbj� = 0, where apq

and bpq denote the (p, q)th elements of A and B, respectively. If
coordinate x1,j is disturbance decoupled from coordinate x2,i,
(A, B) must satisfy aji = 0 and

∑n1
q=1 aqi

∑n2
�=1 b�qaj� =0.

Proof: We construct games played by n1 + n2 players
with actions {x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2} and whose game
graphs are identical to Ws (11) and Wa (13). In both learn-
ing dynamics, disturbance decoupling requires no direct path
between the decoupled players. Therefore aji = 0 or bji = 0.

Consider disturbance decoupling of x1,j from x2,i in (10),
paths of length 3 from x2,i to x1,j without self loops is given
by P = {(x2,i, x1,q, x2,�, x1,j) | q ∈ [n1], � ∈ [n2]}. A path of
length 3 with self loops must also include (x2,i, x1,j), whose
weight is 0. We sum path weights over p ∈ P to obtain

∑n1
q=1 aqi

∑n2
�=1 b�qaj� = 0. A similar argument is made for

disturbance decoupling of x2,j from x1,i in (10).
Consider disturbance decoupling of x2,j from x1,i in (12),

paths of length 2 from x1,i to x2,j without self loops is
given by Q = {(x1,i, x2,q, x2,j)|q ∈ [n2]}. A path of
length 2 with self loops must also include (x1,i, x2,j), whose
weight is 0. Weight of (x2,q, x2,j) is given by γ1γ2(BA)jq

= γ1γ2
∑n1

�=1 bj�a�q. We sum path weights over p ∈ Q to
obtain

∑n2
q=1 bqi

∑n1
�=1 a�qbj� = 0. A similar argument is made

for disturbance decoupling of x1,j from x2,i in (12).

V. NUMERICAL EXAMPLE

We provide an example of disturbance decoupling in a LQ
game. Consider a tug-of-war game in which a single target
z ∈ R

2 is controlled by four players. We assume that player
i can move z along vector Bi ∈ R

2 by ui ∈ R, and that z is
stationary without any player input, i.e., A = I. Starting with a
randomized initial condition z0, at each step t, the target moves
according to the dynamics zt+1 = zt +∑4

i=1 Biut
i where B1 =

[1, 0]�, B2 = [ 1√
2
, 1√

2
]�, B3 = [ −1√

2
, 1√

2
]�, B4 = [0, 1]�.

Each player i’s cost function is given by

1
2

∥
∥
∥z9 − ci

∥
∥
∥

2

2
+

8∑

t=0

1
2

∥
∥zt − ci

∥
∥2

2 + 10
∥
∥ut

i

∥
∥2

2

which describes player i’s objective to move target z towards
ci ∈ R

2 in a finite time T = 10 by using minimal amount of
control. By designing the game dynamics to satisfy Theorem 1,
we ensure that player 4’s action is disturbance decoupled from
player 1’s.

Using the equivalent formulation as described
in Section III-D1, Difi(U) = (G�

i Q̄iGi + R̄i)Ui +∑
j 	=i G�

i Q̄i(GjUj + Hz0 − Ci) where Ci = [c�
i , . . . , c�

i ]�.
Hence, the learning dynamics are Uk+1 = WUk +
�Q̄i[G1, . . . , GN]�[(Hz0 − C1)

�, . . . , (Hz0 − CN)�]�,
where Wij = G�

i Q̄iGj = E ⊗ B�
i Bj with B�

1 B2 = B�
1 B3

= B�
2 B4 = 1√

2
, B�

2 B3 = B�
1 B4 = 0, B�

3 B4 = − 1√
2
,

B�
1 B1 = B�

2 B2 = B�
3 B3 = B�

4 B4 = 1, and

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

9 8 7 . . . 1
8 8 7 . . . 1

7 7 7
. . . 1

...
. . . 1

1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
9×9.

To ensure convergence of the undisturbed learning dynam-
ics [3], we use uniform step sizes such that � =
blkdiag(γ1I, . . . , γ4I) with γi =

√
α

β
, where α = λmin(

1
4 (W +

W�)�(W + W�)) and β = λmax(W�W) with λmax(·) and
λmin(·) denoting the maximum and minimum eigenvalues of
their arguments, respectively. The associated game graph is
given in Figure 1, where α = β = γ = 1√

2
E and δ = − 1√

2
E.

A path p = (1, v1, . . . , vk−1, 4) of length k must have path
weight (−1√

2
)mδ ( 1√

2
)mγ Ek, where mδ (mγ ) denotes the number

of times the edge with weight δ (γ ) is traversed in p.
Disturbance decoupling between players 1 and 4 is guar-

anteed if all paths of length k ∈ (0, 36) satisfy (15). We can
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Fig. 2. Left: Trajectory of z with and without disturbances. Players’
preferred destinations are given by triangles. Top right: Players’ game
costs during learning. Bottom right: Players’ control error as a function
of disturbance magnitude.

numerically verify that Proposition 1 is satisfied or make the
following graph-theoretic observations based on Theorem 1.
First, due to the symmetry within the game graph, the exis-
tence of path p = (1, v1, . . . , vk−1, 4) with path weight
L = (−1√

2
)mδ ( 1√

2
)mγ Ek implies the existence of path p̂ =

(1, v̂1, . . . , v̂k−1, 4) with path weight L̂ = (−1√
2
)m̂δ ( 1√

2
)m̂γ Ek,

where mγ = m̂δ and mδ = m̂γ . Second, since edges (3, 4) and
(2, 4) form a cut between player 1 and player 4 in the game
graph, any path between them has the property that mγ +mδ is
odd. From these observations, we can conclude that L = −L̂.
Since each path p of length k and weight L can be paired with
path p̂ of equivalent length k and weight L̂ = −L, we conclude
that all path sets Pk

14 where k > 0 must satisfy Theorem 1.
To numerically verify disturbance decoupling, we simulate

the uncorrupted learning trajectory of z, shown in the left
plot of Figure 2 in purple. We then inject a random distur-
bance into player 1’s gradient updates as given by (3) with
increasing magnitude, and observe its effects on each player’s
action. A sample corrupted trajectory is shown in the left plot
of Figure 2 in brown. In the bottom right plot of Figure 2,
we show the total error in each player’s action from to the
uncorrupted optimal action. We observe that player 4 does not
deviate from the optimal action, while player 1’s action error
increases as the disturbance magnitude increases. We note that
these results hold despite the fact that gradient-based learning
no longer converges. In the top right plot of Figure 2, individ-
ual player costs are compared in one round of gradient-based
learning where ‖di‖ ≤ 50 is injected. Interestingly, despite
action remaining uncorrupted, player 4’s cost is disturbance
affected. Note that the disturbance decoupling in actions does
not necessarily imply disturbance decoupling in costs.

VI. CONCLUSION

In this letter, we investigated and characterized the effects
of gradient disturbances on an N–player gradient-based learn-
ing dynamics. For quadratic games, we defined disturbance
decoupling for arbitrary disturbances, and showed the cost
coupling structure is crucial in facilitating decoupling individ-
ual player’s action from input disturbance. Our future work

aims to leverage these analysis results to design incentives for
players to ensure disturbance decoupling.
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