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a b s t r a c t

Motivated by uncertain parameters encountered in Markov decision processes (MDPs) and stochastic
games, we study the effect of parameter-uncertainty on Bellman operator-based algorithms under a
set-based framework. Specifically, we first consider a family of MDPs where the cost parameters are in
a given compact set; we then define a Bellman operator acting on a set of value functions to produce
a new set of value functions as the output under all possible variations in the cost parameter. We
prove the existence of a fixed point of this set-based Bellman operator by showing that the operator is
contractive on a complete metric space, and explore its relationship with the corresponding family of
MDPs and stochastic games. Additionally, we show that given interval set-bounded cost parameters,
we can form exact bounds on the set of optimal value functions. Finally, we utilize our results to
bound the value function trajectory of a player in a stochastic game.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Markov decision process (MDP) is a fundamental framework
or control design in stochastic environments, reinforcement
earning, and stochastic games (Açıkmeşe & Bayard, 2015; Demir,
ren, & Açikmeşe, 2015; Filar & Vrieze, 2012; Li, Yu, Calderone,
atliff, & Acikmese, 2019). With known cost and transition prob-
bilities, solving an MDP is equivalent to minimizing an objective
n expectation, and requires determining the optimal value func-
ion as well as deriving the corresponding optimal policy for each
tate. Relying on the fact that the optimal value function is the
ixed point of the Bellman operator, dynamic programming meth-
ds iteratively apply variants of the Bellman operator to converge
o the optimal value function and the optimal policy (Puterman,
014).
We are motivated to study MDPs where the parameters that

efine the environment are sets rather than single-valued. Such
set-based perspective arises naturally in the analysis of
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parameter-uncertain MDPs and stochastic games. In this paper,
we develop a framework for evaluating MDPs on compact sets
of costs and value functions. Specifically, we show that when
the cost parameter of the MDP is in a compact set rather than
being single-valued, we can define a Bellman operator that is
contractive with respect to the Hausdorff distance on the space
of compact sets. We prove the existence of a unique and com-
pact fixed point set that the operator must converge to, and
give interpretations of the fixed point set in the context of
parameter-uncertain MDPs and stochastic games.

When modelling a system as a stochastic process, sampling
techniques are often used to determine cost and transition prob-
ability parameters. In such scenarios, the MDP can be either
interpreted as a standard MDP with error bounds on its parame-
ters or as a set-based MDP in which its parameters are set-based
rather than single-valued. In the former approach, the MDP can
be solved with standard dynamic programming methods, and the
stability of its solution with respect to parameter perturbation
can be analysed locally (Abbad & Filar, 1992; Altman & Gaitsgory,
1993; Bielecki & Filar, 1991). However, these sensitivity results
are only local approximations in the context of compact parame-
ter sets. The latter approach is not well explored — some research
exists on bounded interval set MDPs (Givan, Leach, & Dean, 2000),
in which dynamic programming techniques such as value and
policy iteration have been shown to converge. However, while
it is known that parameter-uncertain MDPs may result in value
function sets such as polytopes (Dadashi, Bellemare, Taïga, Roux,
& Schuurmans, 2019), there are no convergence guarantees for
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ynamic programming with polytopic sets of value functions. In
his paper, we show that for a set-based MDP with a compact set
f cost parameters, and any regular MDP whose cost is an element
f the said compact set of cost parameters, the associated set-
ased Bellman operator has a unique and compact fixed point set
hat must contain the optimal value function of the regular MDP.

As opposed to parameter-uncertain MDPs where the underly-
ng cost and probability parameters are constant albeit uncertain,
tochastic games generate MDPs where the cost and probability
arameters vary with opponents’ changing policies. An individ-
al player can interpret a stochastic game as an MDP with a
arameter-varying environment, where holding all opponents’
olicies fixed, the stochastic game played by player i is equivalent
o a regular MDP. At a fixed joint policy, we say that a player’s
olicy is optimal if it is optimal with respect to the corresponding
DP. If every player’s policy is optimal with respect to their
pponents’ fixed policies within a joint policy, then we say that
he game has reached a Nash equilibrium — i.e., every player’s
olicy is optimal for the current joint policy. A Nash equilibrium
efines a joint policy at which no player has any incentive to uni-
aterally deviate from. In learning theory for stochastic games, it is
ften each player’s goal to achieve the Nash equilibrium through
n iterative process. Therefore, many learning algorithms are
ased on variants of dynamic programming, where each player
olves an MDP with costs and transition probabilities changing
t each iteration (Bu, Babu, De Schutter, et al., 2008; Littman,
001). In this paper, we apply a set-based dynamic programming
echnique to a single-controller stochastic game. However, rather
han demonstrating convergence to a Nash equilibrium, we show
hat the set of Nash equilibria must be contained in the fixed
oint set of a set-based Bellman operator.
In Li, Adjé, Garoche, and Açıkmeşe (2020), we began our anal-

sis of set-based MDPs by proving the existence of a unique fixed
oint set associated with the set-based Bellman operator. In this
aper, we demonstrate the significance of this fixed point set by
elating it to the fixed points of parameter-uncertain MDPs and
he Nash equilibria set of stochastic games. We further explore
he fixed point set in the context of iterative solutions to stochas-
ic games, and show that the fixed point set of the set-based
ellman operator bounds the asymptotic behaviour of dynamic
rogramming-based learning algorithms.
The paper is structured as follows: we provide references to

xisting research in Section 2; we recall definitions of the MDP
nd the Bellman operator in Section 3; Section 4 extends these
efinitions to set-based MDPs, providing theoretical results for
he existence of a fixed point set of a set-based Bellman operator.
ection 5 relates properties of the fixed point set to stochastic
ames. An interval set-based MDP is presented in Section 6 with
computation of exact bounds, while the application to stochastic
ames is illustrated in Section 7, where we model unknown
olicies of the opponent as cost intervals.

. Related research

Bounding the fixed point of the Bellman operator with un-
ertain parameters is well studied under robust MDPs such as
n Delage and Mannor (2010) and Wiesemann, Kuhn, and Rustem
2013), where the MDP parameters are either assumed or es-
imated as random variables from a known Gaussian distri-
ution (Delage & Mannor, 2010; Wiesemann et al., 2013). In
ontrast, we model our MDP cost parameter-uncertainty as a
ompact set without any probabilistic prior assumptions. There-
ore, our results are absolute as opposed to chance-constrained
r stochastic.
A closely related work from robust MDP is Iyengar (2005),

here the author analyzes what we consider as the lower bound
2

on the value function of parameter-uncertain MDPs and connects
parameter-uncertain MDPs to stochastic games. We generalize
these results for cost uncertainty only, and show that there exists
an invariant set corresponding to parameter-uncertain MDPs, and
that dynamic programming-based algorithms can converge to the
invariant set itself instead of just obtaining a lower bound.

Our parameter-uncertain MDP model also generalizes the
bounded parameter model presented in Givan et al. (2000), which
considers interval sets instead of general compact sets.

Other approaches to bound the value functions of cost-
uncertain MDPs include Dick, Gyorgy, and Szepesvari (2014),
Haddad and Monmege (2018). MDPs with reachability objectives
are studied in Haddad and Monmege (2018) under a graph-
theoretical MDP uncertainty model. However, the techniques
utilized in Haddad and Monmege (2018) require abstraction of
the MDP state space and therefore do not directly extend to
value functions that are defined per state. A learning approach
to solve cost-uncertain MDPs is taken in Dick et al. (2014), and
convergence in terms of regret is shown using gradient-based
algorithms instead of dynamic programming approaches.

Introduced in Shapley (1953), stochastic games generalize
MDPs to the multi-agent setting, where the goal of each player is
to minimize their individual cost functions. Typically, this leads to
stable behaviour at a Nash equilibrium. In general, it is difficult to
find the Nash equilibrium of a general-sum stochastic game; the
computation complexity has been shown to be NP-hard in Chat-
terjee, Majumdar, and Jurdziński (2004) and value iteration for
such games is shown to diverge in Kearns, Mansour, and Singh
(2000). Convergence guarantees for Bellman operator-based al-
gorithms exist under limited settings such as two-player stochas-
tic games or zero-sum stochastic games (Eisentraut, Křetínskỳ,
& Rotar, 2019; Prasad, Prashanth, & Bhatnagar, 2015; Shapley,
1953; Wei, Hong, & Lu, 2017). However, the same algorithms
have been shown to converge empirically in a wide range of
applications including poker and cyber-security (Ganzfried &
Sandholm, 2009; Shiva, Roy, & Dasgupta, 2010). In this paper,
we consider single-controller stochastic games with imperfect
information (Filar & Vrieze, 2012, Def. 6.3.6), and show that our
set-based value iteration algorithm converges to an invariant set
that over-approximates the Nash equilibrium set.

The topology of value function sets has also garnered inter-
est in the reinforcement learning community (Bellemare, et al.,
2019; Dadashi et al., 2019). In Dadashi et al. (2019), the set of
value functions generated by policy uncertainty is shown to be
a polytope, and Bellman operator-based methods such as value
iteration and policy iteration are shown to converge to the value
function polytope.

3. MDP and Bellman operator

We introduce our notation for existing results in MDP liter-
ature. Contents from this section are discussed in further detail
in(Filar & Vrieze, 2012, Sec. 2.2).

Notation. Sets of N elements are given by [N] = {0, . . . ,N − 1}.
We denote the set of matrices with i rows and j columns of real or
non-negative valued entries as Ri×j or Ri×j

+ , respectively. Matrices
and some integers are denoted by capital letters, X , while sets are
denoted by cursive letters, X . The set of all non-empty compact
subsets of X is denoted by H(X ). The column vector of ones is
denoted by 1N = [1, . . . , 1]⊤ ∈ RN×1. The identity matrix of size
S × S is denoted by IS .

We consider a discounted infinite-horizon MDP defined by
([S], [A], P, C, γ ), where

(1) [S] denotes the finite set of states.
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(2) [A] denotes the finite set of actions. Without loss of gen-
erality, assume that every action is admissible from each
state s ∈ [S].

(3) P ∈ RS×SA defines the transition kernel. Each component
Ps′,sa is the probability of arriving in state s′ by taking
state–action (s, a). The matrix P is column stochastic and
element-wise non-negative — i.e.,∑

s′∈[S]

Ps′,sa = 1, ∀ (s, a) ∈ [S] × [A],

Ps′,sa ≥ 0, ∀ (s′, s, a) ∈ [S] × [S] × [A].

(1)

(4) C ∈ RS×A defines the cost matrix. Each component Csa is
the cost of state–action pair (s, a) ∈ [S] × [A].

(5) γ ∈ (0, 1) denotes the discount factor.

At each time step t , the decision maker chooses an action a at
ts current state s. The state–action pair (s, a) induces a probabil-
ty distribution vector over states [S] as [P1,sa, P2,sa, . . . , PS,sa]. The
tate–action (s, a) also incurs a cost Csa for the decision maker.
The decision maker chooses actions via a policy. We denote a

olicy as a function π : RS
× RA

→ [0, 1], where π (s, a) denotes
he probability that action a is chosen at state s. The set of all
olicies of an MDP is denoted by Π . Within Π , a policy π is
eterministic if at each state s, π (s, a) returns 1 for exactly one
ction, and 0 for all other possible actions. A policy π ∈ Π that
s not deterministic is a mixed policy.

We denote the policy matrix induced by the policy π as Mπ ∈
S×SA, where

Mπ )s′,sa =

{
π (s, a) s′ = s
0 s′ ̸= s.

(2)

very policy induces a Markov chain (El Chamie, Yu, Açıkmeşe, &
no, 2018), given by MπP⊤

∈ RS×S . Each policy also induces a
tationary cost given by

(π ) =

∑
i∈[S]

eie⊤

i Mπ (1S ⊗ IA)C⊤ei, ν(π ) ∈ RS, (3)

here ei ∈ RS is the unit vector pointing in the ith coordinate, ⊗
s the Kronecker product, and IA is the identity matrix of size A.

For an MDP ([S], [A], P, C, γ ), we are interested in minimizing
he discounted infinite horizon expected cost, defined as

⋆
s = min

π∈Π
Eπ
s

{ ∞∑
t=0

γ tCstat

}
, ∀ s ∈ [S], (4)

here Eπ
s (f ) is the discounted infinite horizon expected value of

bjective f with respect to policy π , st and at are the state and
ction taken at time step t , and s is the initial state of the decision
aker at t = 0.
V ⋆
s is the optimal value function for the initial state s. The policy

⋆ that achieves this optimal value is called an optimal policy. In
eneral, the optimal value function V ⋆

s is unique while the optimal
olicy π ⋆ is not. The set of optimal policies always includes at
east one deterministic stationary policy in the unconstrained
etting (Puterman, 2014, Thm. 6.2.11). If there are constraints on
he policy and state space, deterministic optimal policies may
ecome infeasible (El Chamie et al., 2018).

.1. Bellman operator

Determining the optimal value function of a given MDP is
quivalent to finding the fixed point of the associated Bellman
perator, for which a myriad of techniques exists (Puterman,
014). We introduce the Bellman operator and its fixed point here
or the corresponding MDP problem.
3

Definition 1 (Bellman Operator). For a discounted infinite horizon
DP ([S], [A], P, C, γ ), its Bellman operator fC : RS

→ RS is given
omponent-wise as

fC (V )
)
s
:= min

a
Csa + γ

∑
s′∈[S]

Ps′,saVs′ , ∀ s ∈ [S]. (5)

The fixed point of the Bellman operator is a value function
V ∈ RS that is invariant with respect to the operator.

Definition 2 (Fixed Point). V ⋆ is a fixed point of an operator F :

X ↦→ X iff

V ⋆
= F (V ⋆). (6)

In our discussion of the fixed point of the Bellman operator,
we consider the following operator properties.

Definition 3 (Order Preservation). Let X be a partially ordered
space with partial order ⪯. An operator F : X → X is an order
preserving operator iff

x ⪯ x′
→ F (x) ⪯ F (x′), ∀ x, x′

∈ X .

Definition 4 (Contraction). Let (X , d) be a complete metric space
with metric d. An operator F : X ↦→ X is a contracting operator
iff

d(F (x), F (x′)) < d(x, x′), ∀ x, x′
∈ X .

The Bellman operator fC is known to have both properties on
the complete metric space (RS, ∥·∥∞). Therefore, the Banach fixed
point theorem can be used to show that fC has a unique fixed
point (Puterman, 2014, Thm. 6.2.3). Because the optimal value
function V ⋆ is given by the unique fixed point of the associated
Bellman operator fC , we use the terms optimal value function and
fixed point of fC interchangeably.

In addition to obtaining V ⋆, MDPs are also solved to determine
the optimal policy π ⋆. Every policy π induces a unique stationary
value function V which satisfies

V = ν(π ) + γMπP⊤V , (7)

where γ ∈ (0, 1). We note that V is a linear function of C through
ν(π ) as defined in (3), where the dependency is made implicit to
simplify notation.

Given a policy π , we can equivalently solve for the stationary
value function V as V = (I − γMπP⊤)−1ν(π ). From this perspec-
tive, the optimal value function V ⋆ is the minimum vector in ∥∥∞

among the set of stationary value functions corresponding to the
set of policies Π . Policy iteration algorithms utilize this fact to
obtain the optimal value function V ⋆ by iterating over the feasible
policy space (Puterman, 2014, Sec. 6.4).

Given an input value function V , we can also derive a deter-
ministic optimal policy π associated with fC (V ) as

π (s, a) :=

⎧⎨⎩1 a = argmin
a′∈[A]

Csa′ + γ
∑

s′∈[S]
Ps′,sa′Vs′

0 otherwise,
(8)

where argmina′∈[A] returns the first optimal action a′ if multiple
actions minimize the expression Csa′ + γ

∑
s′∈[S]Ps′,sa′Vs′ at state s.

While policies that solve fC (V ) may not be unique, determin-
istic or stationary, the policy π derived from (8) will always
be unique, deterministic and stationary for a given ordering of
actions within the action set. For the remaining sections, we
assume that the action set [A] has a fixed ordering of actions.
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.2. Termination criteria for value iteration

Among the many algorithms that solve for the fixed point of
he Bellman operator, value iteration (VI) is a commonly used
and simple technique in which the Bellman operator is iteratively
applied until the optimal value function is reached — i.e. starting
from any value function V 0

∈ RS , we apply

V k+1
s = fC (V k)

= min
a∈[A]

Csa + γ
∑

s′∈[S]
Ps′,saV k

s′ , k = 1, 2, . . . . (9)

The recursion given by (9) converges to the optimal value
function of the corresponding discounted infinite horizon MDP.
The following result presents a stopping criteria for (9).

Lemma 1 (Puterman, 2014, Thm. 6.3.1). For any initial value func-
tion V 0

∈ RS , let {V k
}k∈N satisfy the value iteration given by (9). For

ϵ > 0, ifV k+1
− V k


∞

< ϵ
(1 − γ )

2γ
,

hen V k+1 is within ϵ/2 of the fixed point V ⋆, i.e.

V k+1
− V ⋆


∞

<
ϵ

2
.

Lemma 1 connects the relative convergence of sequence
{V k

}k∈N to the absolute convergence towards V ⋆ by showing that
he former implies the latter. In general, the stopping criteria
iffer for different MDP objectives (see Haddad & Monmege, 2018
or recent results on stopping criteria for MDP with a reachability
bjective).

. Set-based Bellman operator

The classic Bellman operator with respect to a cost C is well-
tudied. Motivated by parameter-uncertain MDPs and stochastic
ames, we extend the classic Bellman operator by lifting it to
perate on sets rather than individual value function vectors in
S . For the set-based operator, we analyse its set-based domain
nd prove relevant operator properties such as order preservation
nd contraction. Finally, we show the existence of a unique fixed
oint set V⋆ and relate its properties to the fixed point of the
lassic Bellman operator.

.1. Set-based operator properties

For the domain of our set-based operator, we define a new
etric space (H(RS), dH ) based on the Banach space (RS, ∥·∥∞)

Rudin et al., 1964), where H(RS) denotes the collection of non-
mpty compact subsets of RS . We equip H(RS) with partial order,
, where for V,V ′

∈ H(RS), V ⪯ V ′ iff V ⊆ V ′. The metric dH is
the following Hausdorff distance (Henrikson, 1999) defined as

dH (V,V ′) :=max { sup
V∈V

inf
V ′∈V ′

V − V ′


∞
,

sup
V ′∈V ′

inf
V∈V

V − V ′


∞
}. (10)

Lemma 2 (Henrikson, 1999, Thm 3.3). If X is a complete met-
ric space, then its induced Hausdorff metric space (H(X ), dH ) is a
complete metric space.

From Lemma 2, since (RS, ∥·∥∞) is a complete metric space,
H(RS) is a complete metric space with respect to dH . On the com-
plete metric space H(RS), we define a set-based Bellman operator
which acts on compact sets.
4

Definition 5 (Set-based Bellman Operator). For a family of MDP
problems, ([S], [A], P, C, γ ), where C ⊂ RS×A is a non-empty
compact set, its associated set-based Bellman operator is given
by

FC(V) := cl
⋃

(C,V )∈C×V

fC (V ), ∀ V ∈ H(RS),

where cl is the closure operator.

Since FC is the union of uncountably many singleton sets, the
resulting set may not be bounded. Therefore, it is not immediately
obvious that FC(V) maps into the metric space H(RS).

Proposition 1. If C is non-empty and compact, then FC(V) ∈ H(RS),
V ∈ H(RS).

roof. For a non-empty and bounded subset A of a finite-
imensional real vector space, we define its diameter as
iam (A) = supx,y∈A ∥x − y∥∞. The diameter of a set in a metric
pace is finite if and only if it is bounded (Rudin et al., 1964).
Take any non-empty compact set V ∈ H(RS). As FC(V) ⊆ RS , it

uffices to prove that FC(V) is closed and bounded. The closedness
s guaranteed by the closure operator. A subset of a metric space
s bounded iff its closure is bounded. Hence, to prove the bound-
dness, it suffices to prove that diam

(
∪(C,V )∈C×V fC (V )

)
< +∞.

or any two cost-value function pairs (C, V ), (C ′, V ′) ∈ C × V ,

C (V ) − fC ′ (V ′) =

(
fC (V ) − fC ′ (V )

)
+

(
fC ′ (V ) − fC ′ (V ′)

)
. (11)

We bound (11) by bounding each of the two terms on the right
hand side separately. Due to contraction properties of fC ′ , the
second term on the right hand side satisfies

fC ′ (V ) − fC ′ (V ′)


∞
≤

γ
V − V ′


∞
. To bound the first term, we note that for any two

vectors a, b ∈ RS ,

∥a − b∥∞ = max
{
max(a − b),max(b − a)

}
, (12)

where the operator max{. . .} returns the maximum element,
and max(a) returns maximum component of vector a. Evaluating
fC ′ (V ) − fC (V ) with (12),

max(fC ′ (V ) − fC (V ))

≤max(ν ′(π ) + γMπP⊤V − ν(π ) − γMπP⊤V )

≤max
(
ν ′(π ) − ν(π )

)
≤

∑
i∈[S]

e⊤

i


∞

∥Mπ∥∞ ∥1S ⊗ IA∥∞

(C ′
− C)⊤


∞

∥ei∥2
∞

,

where π is an optimal policy corresponding to fC . Since
∥1S ⊗ IA∥∞ = ∥ei∥∞ =

e⊤

i


∞

= ∥Mπ∥∞ = 1 for any π ∈ Π ,
max(fC ′ (V ) − fC (V )) ≤ S

(C ′
− C)⊤


∞
. Similarly, we can show

max(fC (V )− fC ′ (V )) ≤ S
(C ′

− C)⊤


∞
. Finally it follows from (11)

thatfC (V ) − fC ′ (V ′)


∞
≤ S

(C ′
− C)⊤


∞

+ γ
V − V ′


∞

. (13)

ince (13) holds for all (C, V ), (C ′, V ′) ∈ C × V , and furthermore,
or all C, C ′

∈ C and V , V ′
∈ V ,

(C ′
− C)⊤


∞

≤ diam
(
C⊤

)
,

V − V ′


∞
≤ diam (V) ,

he inequality diam
(
∪(C,V )∈C×V fC (V )

)
≤ S diam

(
C⊤

)
+

diam (V) < +∞ holds as both C⊤ and V are bounded. □

Proposition 1 shows that FC is an operator from H(RS) to
(RS). Having established the space on which FC operates, we
an draw many parallels between FC and fC . Similar to fC having
unique fixed point V ⋆ in the vector space, does FC have a
nique fixed point set V⋆ which satisfies F (V⋆) = V⋆? To take
C
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he comparison further, since V ⋆ is optimal for an MDP problem
efined by ([S], [A], P, C, γ ), we consider if V⋆ correlates to the
amily of optimal value functions that correspond to the MDP
amily ([S], [A], P, C, γ ). We explore these parallels in this paper
and derive sufficient conditions for the existence and uniqueness
of the fixed point of the set-based Bellman operator FC .

We demonstrate the existence and uniqueness of V⋆ by uti-
izing the Banach fixed point theorem (Puterman, 2014), which
tates that a unique fixed point must exist for all contraction
perators on a complete metric space. First, we show that FC has
roperties given in Definitions 3 and 4 on the complete metric
pace (H(RS), dH ).

roposition 2. For any V ∈ H(RS) and C ⊂ RS×A closed and
bounded, FC is an order preserving and a contracting operator in the
Hausdorff distance.

Proof. Consider V , V ′
∈ H(RS) which satisfy V ⊆ V ′, then

FC(V) = cl
⋃
(C,V )

∈C×V

fC (V ) ⊆ cl
⋃
(C,V ′)

∈C×V′

fC (V ′) = FC(V ′).

We conclude that FC is order-preserving. To see that FC is con-
tracting, we need to show

sup
V∈FC (V)

inf
V ′∈FC (V ′)

V − V ′


∞
< dH (V,V ′) (14)

sup
V ′∈FC (V ′)

inf
V∈FC (V)

V − V ′


∞
< dH (V,V ′), (15)

First we note that taking sup (inf) of a continuous function
over the closure of a set A is equivalent to taking the sup
(inf) over A itself. Furthermore, the single-cost Bellman op-
erator fC (V ) is an element of the set-based Bellman operator
∪(C,V )∈C×V fC (V ) iff (C, V ) ∈ C × V . Therefore taking the sup(inf)
of

V − V ′


∞
over V ∈ FC(V) is equivalent to taking the sup(inf)

of
fC (V ) − fC ′ (V ′)


∞

over (C, V ) ∈ C × V .
Given V,V ′

∈ H(RS) and for arbitrary V ∈ V , C ∈ C,

inf
(C ′,V ′)
∈C×V′

fC (V ) − fC ′ (V ′)


∞
(16a)

≤ inf
(C ′,V ′)
∈C×V′

S
(C − C ′)⊤


∞

+ γ
V − V ′


∞

(16b)

≤S
(C ′

− C ′)⊤


∞
+ inf

V ′∈V ′
γ

V − V ′


∞
(16c)

≤γ inf
V ′∈V ′

V − V ′


∞
, (16d)

where in (16b) we take the upper bound derived in (13). In (16c)
we haven chosen the matrix C = C ′ to minimize

(C − C ′)⊤


∞
.

This eliminates the cost term and we arrive at (16d).
Then (14) and (15) simplify to

sup
V∈FC (V)

inf
V ′∈FC (V ′)

V − V ′


∞
≤ γ sup

V∈V
inf

V ′∈V ′

V − V ′


∞
,

and

sup
V ′∈FC (V ′)

inf
V∈FC (V)

V − V ′


∞
≤ γ sup

V ′∈V ′

inf
V∈V

V − V ′


∞
.

Therefore dH (FC(V), FC(V ′)) ≤ γ dH (V,V ′). Since γ ∈ (0, 1), FC is a
contracting operator on H(RS). □

The contraction property of FC implies that any repeated ap-
plication of the operator to a set V0

∈ H(RS) results in a sequence
of sets such that the consecutive sets become increasingly closer
in the Hausdorff distance. It is then natural to consider whether
there is a unique set which all FC(Vk) converge to.
5

Theorem 1. There exists a unique fixed point V⋆ of the set-based
Bellman operator FC as defined in Definition 1, such that FC(V⋆) =

V⋆, and V⋆ is a closed and bounded set in RS .
Furthermore, for any set V0

∈ H(RS), the iteration

Vk+1
= FC(Vk), (17)

converges in the Haussdorf distance — i.e.,

lim
k→∞

dH (FC(Vk),V⋆) = 0.

Proof. As shown in Proposition 2, FC is a contracting operator.
From the Banach fixed point theorem (Puterman, 2014, Thm.
6.2.3), there exists a unique fixed point V⋆, and any arbitrary
V0

∈ H(RS) will generate a sequence of sets {FC(Vk)}k∈N that
converges to V⋆. □

4.2. Properties of the fixed point set

For the Bellman operator fC on the metric space RS , the fixed
point V ⋆ corresponds to the optimal value function of the MDP
associated with cost C . Because there is no direct association of
an MDP problem with a set of cost parameters C, we cannot claim
the same for the set-based Bellman operator and V⋆. However, V⋆

does have many desirable properties on H(RS), especially in terms
of set-based value iteration (17) and in connection to the Bellman
operator fC .

We consider the following generalization of value iteration:
instead of a fixed cost parameter, we have at each iteration k, a Ck

that is randomly chosen from the compact set of cost parameters
C. In general, limk→∞ fCk (V k) may not exist. However, we can infer
from Theorem 1 that the sequence {V k

} converges to the set V⋆

in the Hausdorff distance.

Proposition 3. Let {Ck
}k∈N ⊆ C be a sequence of costs in C, where

C is a compact set within RS×A. Let us define the iteration

V k+1
= fCk (V k),

for any V 0
∈ RS . Then the sequence {V k

}k∈N satisfies

lim
k→∞

inf
V∈V⋆

fCk (V k) − V


∞
= 0,

where V⋆ is the unique fixed point set of the operator FC .

Proof. Define V0
= {V 0

}, then from Definitions 5 and 1, V k+1
=

fCk (V k) ∈ FC(Vk) for all k ≥ 0.
At each iteration k, we write Vk+1

= FC(Vk). From Theorem 1,
Vk converges to V⋆ in the Hausdorff distance,
limk→∞ dH (Vk,V⋆) = 0. Therefore, for every δ > 0, there exists
K such that for all k ≥ K , dH (Vk,V⋆) < δ. Since fCk (V k) ∈ Vk+1,
infV∈V⋆

fCk (V k) − V


∞
≤ dH (Vk+1,V⋆) < δ must also be true for

all k ≥ K . Therefore limk→∞ infV∈V⋆

fCk (V k) − V


∞
= 0. □

Proposition 3 implies that regardless of whether or not the
sequence {fCk (V k)}k∈N converges, the sequence {V k

} must become
arbitrarily close in Hausdorff distance to the set V⋆. This has
important implications in the stochastic game setting that are
further explored in Section 5. On the other hand, Proposition 3
implies that if the sequence {V k

} does converge, its limit point
must be an element of V⋆.

Corollary 1. Define the set of fixed points of fC for each C ∈ C as

U =

⋃
C∈C

{V ∈ RS
| fC (V ) = V },

i.e., U is the set of optimal value functions for the set of MDPs
([S], [A], P, C, γ ) where C ∈ C. Furthermore, consider all sequences
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Ck
}k∈N ⊆ C such that for V 0

∈ RS , the iteration V k+1
= fCk (V k)

pproaches V = limk→∞ V k, and define the set of all such limits as

W =

⋃
{Ck}k∈N⊆C

{V ∈ RS
| lim
k→∞

fCk (V k) = V , where

V 0
∈ RS, V k+1

= fCk (V k), k = 0, 1, . . . },

(18)

hen U ⊆ W ⊆ V⋆.

roof. For any V ∈ W and V ⋆
∈ V⋆,

V ⋆
− V


∞

≤
V ⋆

− fCk (V k)


∞
+

fCk (V k) − V


∞

s satisfied for all k ∈ N. Furthermore, by assumption, each V ∈ W
as an associated iteration V k+1

= fCk (V k) whose limit point is
qual to V , i.e. limk→∞

fCk (V k) − V


∞
= 0. Additionally,

lim
→∞

inf
V ⋆∈V⋆

fCk (V k) − V ⋆


∞
= 0

ollows from Proposition 3. Therefore,

inf
⋆∈V⋆

V ⋆
− V


∞

≤ 0, ∀ V ∈ W.

ince the infimum over a compact set is always achieved by an
lement of the set (Rudin et al., 1964), V = V ⋆

∈ V⋆. Therefore
⊆ V⋆. To see that U ⊆ W , take Ck

= C for all k = 0, 1, . . .,
herefore U ⊆ W . □

emark 1. Wemake the distinction between V⋆,W , and U to em-
hasize that V⋆ is not simply the set of fixed points corresponding
o fC for all possible C ∈ C, given by U , or all the feasible limits of
Ck for some sequence {Ck

}k∈N ⊂ C, given by W . The fixed point
et V⋆ contains all possible limiting trajectories of {fCk (V k)}k∈N
ithout assuming a limit exists.

In Corollary 1, U can be easily understood as the set of optimal
alue functions for the set of standard MDPs ([S], [A], P, C, γ )
enerated by C ∈ C. An interpretation for W is perhaps less ob-
ious. We use the following example to illustrate the differences
etween these three sets.

xample 1. Consider a single state, two action MDP with a
iscount factor γ = 0.9, where C is given by {

[
0 1

]
,
[
0 2

]
,

1 1
]
}. Here, U = {0, 10} corresponds to the three optimal value

unctions when cost is fixed —i.e., where Ck
= C ∈ C. We note

hat if {Ck
} ⊆ {

[
0 1

]
,
[
0 2

]
}, then V ⋆

= 0 regardless of how
k is chosen. ThereforeW = {0}∪U = U . Finally, if Ck is randomly
hosen from C and V 0

= 0, V k will randomly fluctuate but satisfy
k
∈ V⋆

= [0, 10].

In the context of robust MDPs, U contains all the fixed point
alue functions of regular MDPs. The value function set W con-
ains the fixed point value functions which are invariant to fluc-
uating costs within a subset of C. On the other hand, even if
he value functions do not converge, the value function trajectory
ill still converge to V⋆. Therefore if the goal is to bound the
symptotic behaviour of V k, it is more useful to determine V⋆.
We summarize our results on the set-based Bellman operator

s follows: given a compact set of cost parameters C, FC converges
o a unique compact set V⋆. The set V⋆ contains all the fixed points
f fC for C ∈ C. Furthermore, V⋆ also contains the limits of fCk (V k)
or any {Ck

}k∈N ⊆ C, V 0
∈ RS , given that limk→∞ V k converges.

ven if the limit does not exist, V k must asymptotically converge
o V⋆ in the Hausdorff distance.

. Single-controller stochastic games

In this section, we further elaborate on the properties of the
ixed point set V⋆ in the context of single-controller stochastic
6

ames, and show that with an appropriate over-approximation
f the Nash equilibria cost parameters, V⋆ contains the optimal
alue functions for player one at Nash equilibria.
A stochastic game extends a standard MDP to the competitive

ulti-agent setting (Shapley, 1953). In the interest of clarity, we
efine Nash equilibria as well as player value functions in the
ontext of two-player stochastic games. However, the following
efinitions extend to the N-player stochastic game scenario (Filar
Vrieze, 2012).
We note that the stochastic game we discuss here implicitly

ssumes imperfect information (Filar & Vrieze, 2012, Def. 6.3.6) —
t every state, both players have multiple actions to choose from.
herefore, each player’s choice of action induces uncertainty in
heir opponent’s costs.

In a two-player stochastic game, both players solve their own
DP while sharing the same states and dynamics. As opposed to
tandard MDPs, each player’s cost and transition kernel depend
n the joint policy, π = (π1, π2), where π1 and π2 are respectively
layer one and player two’s policies as defined for standard MDPs
n Section 3. The set of joint policies is given by Π , while player
ne’s and player two’s sets of policies are given by Π1 and Π2,
espectively. We denote the actions of player one by a and the
ctions of player two by b. Players share a common state space
iven by [S]. The transition kernel of the shared dynamics is
etermined by the tensor Q ∈ RS×S×A1×A2 , where Q satisfies∑

′∈[S]

Qs′sab = 1, ∀ (s, a, b) ∈ [S] × [A1] × [A2],

s′sab ≥ 0, ∀ (s′, s, a, b) ∈ [S] × [S] × [A1] × [A2].

Each player’s cost is given by Di
∈ RS×A1×A2 , where D1

sab and D2
sab

denote player one and player two’s cost when the joint action
(a, b) is taken from state s, respectively.

For a specific policy adopted by player two, player one’s tran-
sition kernel and cost can be represented using the same notation
of Section 3. When player two applies policy π2, player one’s
transition kernel is given by

P1(π2) ∈ RS×SA1 , P1
s′,sa(π2) =

∑
b∈[A2]

(π2)sbQs′sab. (19)

Furthermore, player one’s cost is given by

C1(π2) ∈ RS×A1 , C1
sa(π2) =

∑
b∈[A2]

(π2)sbD1
sab. (20)

For a specific π1 adopted by player one, player two’s cost C2(π1)
and transition kernel P2(π1) can be similarly defined. Each player
then solves a discounted MDP given by ([S], [Ai], P i(πj), C i(πj), γi).
Since each player only controls a part of the joint action space, the
generalization to the joint action space introduces non-stationarity
in the transition and cost, when viewed from the perspective of
an individual player solving an MDP.

Given a joint policy (π1, π2), each player attempts to minimize
ts value function. Player i’s optimal discounted infinite horizon
xpected cost is given by

i
s = min

πi∈Πi
Eπi
s

{ ∞∑
t=0

γ t
i C

i
stat (πj)

}
, ∀ s ∈ [S]. (21)

Given a joint policy π = (π1, π2), both players have unique
tationary value functions

(
V 1(π1, π2), V 2(π1, π2)

)
given by

1(π1, π2) = ν1(π1, π2) + γ1Mπ1P
1(π2)⊤V 1(π1, π2), (22a)

2(π1, π2) = ν2(π1, π2) + γ2Mπ2P
2(π1)⊤V 2(π1, π2), (22b)

here ν1(π1, π2) =
∑

i∈[S] eie
⊤

i Mπ1 (1s ⊗ IA1 )C
1(π2)⊤ei and

2(π , π ) =
∑

e e⊤M (1 ⊗I )C2(π )⊤e . Since a two-player
1 2 i∈[S] i i π2 s A2 1 i
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tochastic game can be viewed as two coupled MDPs, the MDP
otion of optimality must be expanded to reflect the dependency
f a player’s individual optimal policy on the joint policy space.
e define a Nash equilibrium in terms of each player’s value

unction (Filar & Vrieze, 2012, Sec. 3.1).

efinition 6 (Two-Player Nash Equilibrium). A joint policy π ⋆
=

π ⋆
1 , π

⋆
2 ) is a Nash equilibrium if the corresponding value func-

ions as given by (22) satisfy
1(π ⋆

1 , π
⋆
2 ) ≤ V 1(π1, π

⋆
2 ), ∀ π1 ∈ Π1,

V 2(π ⋆
1 , π

⋆
2 ) ≤ V 2(π ⋆

1 , π2), ∀ π2 ∈ Π2.

We also denote the Nash equilibrium value functions as V 1(π ⋆)
and V 2(π ⋆) and the set of Nash equilibria for a stochastic game
as ΠNE ⊂ Π .

Definition 6 implies that a Nash equilibrium is achieved when
the joint policy simultaneously generates both value functions
V 1(π ⋆) and V 2(π ⋆), which are the fixed points of the Bellman op-
erator with respect to parameters

(
C1(π2), P1(π2)

)
and

(
C2(π1),

P2(π1)
)
, respectively — i.e. V 1(π ⋆

1 , π
⋆
2 ) = min

π1∈Π1

{
ν1(π1, π

⋆
2 ) + γ1

Mπ1P
1(π ⋆

2 )
⊤V 1(π ⋆

1 , π
⋆
2 )

}
, and V 2(π ⋆

1 , π
⋆
2 ) = min

π2∈Π2

{
ν2(π ⋆

1 , π2) +

γ2Mπ2P
2(π ⋆

1 )
⊤V 2(π ⋆

1 , π
⋆
2 )

}
.

In general, a stochastic game does not have a unique Nash
equilibrium. Furthermore, Nash equilibria policies are not nec-
essarily composed of deterministic individual policies. Therefore
while each player’s Nash equilibrium value function is always the
fixed point of the associated Bellman operator, the Nash equilib-
rium policy for each player may not be the optimal deterministic
policy associated to the Nash equilibrium value function. The
existence of at least one Nash equilibrium for any general-sum
stochastic game is given in Filar and Vrieze (2012). When the
stochastic game is also zero-sum, all Nash equilibria correspond
to a unique value function.

Since the technical content of this paper does not address
non-stationarity in the transition kernel, we focus on analysing
non-stationarity in the cost term. Specifically, we constrain our
analysis to a single-controller stochastic game (Filar & Vrieze,
2012), i.e. when the transition kernel is controlled by player one
only. Single-controller stochastic games form an important class
of games to model dynamic control in queueing networks (Alt-
man, 1994) and attacker–defender games with stochastic transi-
tions (Ang, Chan, Jiang, & Yeoh, 2017; Eldosouky, Saad, & Niyato,
2016). Similar to our discussion of a two-player Nash equilibrium,
we exclusively consider a two-player single-controller stochastic
game. However, we note that the following definition can be
extended to an N-player single-controller stochastic game in
which the transition kernel is independent of all but one player’s
actions.

Definition 7 (Single-controller stochastic game). A single-controller
stochastic game is a two-player stochastic game where the prob-
ability transition kernel is independent of player two’s actions,
i.e., for each (s′, s, a) ∈ [S] × [S] × [A1]

Qs′sab = Qs′sab′ , ∀ b, b′
∈ [A2],

i.e. P1(π2) = P , ∀ π2 ∈ Π2 and P2(π1)s′,sb = P2(π1)s′,sb′ , ∀ b, b′
∈

[A2], π1 ∈ Π1.

Although both players are still optimizing their value functions
in a single-controller stochastic game, player two’s policy only af-
fects its immediate cost at each state, while its transition dynamic
7

Fig. 1. Feasible player costs vs interval set over-approximation.

ecomes a time-varying Markov chain. Furthermore, player two’s
olicy affects player one’s MDP through cost matrix C1(π2).
We analyse a single-controller game from the set-based MDP

erspective by utilizing Proposition 3. Suppose we are given a
ompact set C ⊂ RS×A1 that over-approximates CNE , the set of
cost parameters observed by player one at Nash equilibria, given
by

CNE
= {C1(π ⋆

2 ) ∈ RS×A1 | (π ⋆
1 , π

⋆
2 ) ∈ ΠNE} ⊆ C. (23)

Then the Nash equilibria value functions belong to the fixed point
set of FC . The simplest over-approximations of CNE is the interval
set of all feasible costs.

Example 2 (Interval Set Approximation). An approximation to CNE

can always be given by interval sets. At each state–action pair
(s, a), the MDP cost parameter for player one is given by (20).

e can take the maximum and minimum elements of the set
D1
sab}b∈[A2] for all state actions pairs (s, a) to form an interval set
= C11 × · · · × CSA1 ∈ H(RS×A1 ), such that

sa = {D1
sab}b∈[A2] = [C sa, C sa],

where C sa = minb∈[A2] D1
sab and C sa = maxb∈[A2] D1

sab can be
directly observed.

Interval set approximation will always give an admissible ap-
proximation. However, more general sets such as polytopes allow
for more accurate representations of the player’s feasible costs.

Example 3 (Polytope Set Approximation). Consider the set of costs
at a particular state s in a two-player single-controller stochas-
ic game, for which A1 = 2 and A2 = 3. Player one’s costs
corresponding to player two’s deterministic policies are given by
points (1, 0, 0), (0, 1, 0), and (0, 0, 1) in Fig. 1. Any mixed policy
from player two will result in an expected cost for player one
that corresponds to a point within the blue region in Fig. 1. On
the other hand, the approximation from Example 2 is given by the
yellow region. In this example, we can observe that the interval
set generously over-approximates player one’s feasible costs.

An over-approximation of the set of feasible costs will also
over-approximate the possible limiting trajectories for a player’s
learning algorithm. Consider the costs at point ×1 = (C ′

2, C
′

1) in
Fig. 1, here value iteration would have chosen a2 corresponding
to C ′

2 in its value iteration and return the corresponding value
function and transition kernel for state s. However, the true cost
when action a2 has equivalent cost C ′

2 is at ×2 = (C̄1, C ′

2) on
the boundary of the blue polytope. Since ×2 lies below the line
C1 = C2, a1 corresponding to C̄1 is the actual optimal action. Not
only does the true cost (C̄1, C ′

2) result in a different value function
and transition kernel, the value function and transition kernel

′ ′
when costs are (C2, C1) are infeasible.
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The set of feasible costs itself is an over-approximation of the
Nash equilibria cost set CNE . As Example 3 shows, the extension
from interval sets to compact sets enables additional information
(feasible costs, knowledge of opponents’ policy) to be used to
approximate CNE to greater accuracy.

Given a compact set C that over-approximates the set of player
one’s cost parameters at Nash equilibria, CNE , we now show that
the Nash equilibria value functions for player one must lie within
V⋆, the fixed point set of FC .

Theorem 2. In a single-controller stochastic game, let C ⊂ RS×A1

be an over-approximation of the Nash equilibria costs formulated
in (23). If C is compact, then the set of stationary value functions
for player one at Nash equilibria policies (22a) is a subset of V⋆, the
fixed point set of FC .

Proof. We define the set of Nash equilibria value functions for
player one as

VNE
=

{
V ∈ RS

| V = fC1(π⋆
2 )
(V )

}
, (24)

where the Bellman operator fC1(π⋆
2 )

is defined with P , the π2-
independent transition kernel for both players. For any V ⋆

∈ VNE ,
there exists C⋆

= C1(π ⋆
2 ) ∈ C such that V ⋆ is the fixed point of

fC⋆ . Then from Corollary 1, V ⋆
∈ V⋆. □

Remark 2. Although the Nash equilibrium value function V ⋆ is al-
ways the unique fixed point of fC⋆ given by (5), where C⋆ is player
one’s cost at Nash equilibrium, we note that in general, player
one’s policy at Nash equilibrium is not the optimal deterministic
policy of fC⋆ (V ⋆) given by (8); this is because the joint policy at
Nash equilibrium may not be composed of deterministic individ-
ual policies, while the solution to (8) is always deterministic.

However, player one’s policy at Nash equilibrium must be a
convex combination of all deterministic policies that solve (8) (Fi-
lar & Vrieze, 2012).

We summarize the application of the set-based MDP frame-
work to single-controller stochastic games as the following: when
C over-approximates the set of costs at Nash equilibria, the fixed
point set V⋆ of operator FC contains all of the Nash equilibria
value functions for player one in a single-controller stochastic
game.

6. Application to interval set-based Bellman operator

In this section, we show that when the cost parameter set C
and the initial value function set V0 are interval sets, the fixed
point set V⋆ of FC is also an interval set, as done similarly in Gi-
van et al. (2000). However, we note that convergence in Givan
et al. (2000) is shown under an unconventional partial ordering
scheme. Leveraging our set-based Bellman operator framework
and the Hausdorff distance as our metric, our results are derived
in a more straightforward manner using interval arithmetics.

As shown in Examples 2 and 3, interval sets over-approximate
the set of Nash equilibria costs given by (23). In this section, we
compute the fixed point set V⋆ of an interval set-based Bellman
operator. Suppose the set of costs is given by

C =

{
C ∈ RS×A

| Csa ∈ [C sa, C sa], ∀ (s, a) ∈ [S] × [A]

}
. (25)

and the set of input value functions is given by

V =

{
V ∈ RS

| Vs ∈ [V s, V s], ∀ s ∈ [S]
}
. (26)
8

6.1. Hausdorff distance between interval sets

We first show that the Hausdorff distance between two inter-
val sets V,V ′

∈ H(RS) can be computed by strictly using the
pper and lower bounds of the intervals.

emma 3. For two intervals X ,Y ∈ H(RS, ∥·∥∞) given by
= [x, x] and Y = [y, y], where x, x, y, y ∈ RS , the Hausdorff

istance (10) can be calculated as

H (X ,Y) = max{
x − y


∞

, ∥x − y∥∞}.

Proof. We consider the component-wise Hausdorff distance by
noting that when coupled with the infinity norm on RS , the
Hausdorff distance satisfies

dH (X ,Y) = max
i∈[S]

dH (Xi,Yi),

where X = X1 × · · ·XS and Y = Y1 × · · ·YS (Chavent, 2004).
We first compute dH (Xi,Yi), where Xi = [xi, xi] and Yi =

yi, yi] are interval sets. Recall that the infinity norm can be
written using max operators given in (12). The nested max rep-
resentation of the infinity norm allows us to directly evaluate the
infimum and supremum of ∥xi − yi∥∞ over Xi and Yi respectively,
s

sup
i∈Yi

inf
xi∈Xi

∥xi − yi∥∞ = max{max(xi − y
i
),max(yi − xi)}.

Similarly, we can derive

sup
xi∈Xi

inf
yi∈Yi

∥xi − yi∥∞ = max{max(y
i
− xi),max(xi − yi)}.

Finally we recall the Hausdorff distance from (10):

dH (Xi,Yi) = max{ sup
yi∈Yi

inf
xi∈Xi

∥xi − yi∥∞ ,

sup
xi∈Xi

inf
yi∈Yi

∥xi − yi∥∞}

= max{max(xi − yi),max(yi − xi),

max(yi − xi),max(xi − yi)}

= max{
xi − yi


∞

, ∥xi − yi∥∞}.

(27)

hen the total Hausdorff distance between X and Y is given by

dH (X ,Y) = max
i∈[S]

{max{
xi − yi


∞

, ∥xi − yi∥∞}}

= max{
x − y


∞

, ∥x − y∥∞}.
□ (28)

Lemma 3 shows that interval sets are nice in that their Haus-
orff distances can be derived via component-wise operations
n the boundaries of the intervals. We use Lemma 3 later in
his section to obtain convergence guarantees of set-based value
teration to the fixed point set of the interval set-based Bellman
perator.

.2. Interval arithmetic

To compute the fixed point of an interval set-based Bell-
an operator, we introduce some relevant interval arithmetic
perators (Moore, 1966).

α[a, b] = [αa, αb], α ≥ 0,
[a, b] + [c, d] = [a + c, b + d],
[a, b] − [c, d] = [a − d, b − c],

min{[a, b], [c, d]} = [min{a, c},min{b, d}], (29)

where the last operator min{[a, b], [c, d]} denotes the smallest
interval that contains {min{x, y}, | x ∈ [a, b], y ∈ [c, d]}. Since
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he last equivalence statement in (29) is not as obvious as the
tandard addition and subtraction operators, we prove it in the
ollowing Lemma.

emma 4. The min operator for interval sets can be calculated as

in{[a, b], [c, d]} = [min{a, c},min{b, d}].

roof. Let us consider the sets A = min{[a, b], [c, d]} and
= [min{a, c},min{b, d}]. We first show that A ⊆ B: for z ∈

in{[a, b], [c, d]}, there exist x ∈ [a, b] and y ∈ [c, d] such that
= min{x, y}. Then necessarily, min{a, c} ≤ z and z ≤ min{b, d}
ust be satisfied.
To prove the inclusion B ⊆ A, take v ∈ [min{a, c},min{b, d}].

f v ∈ [a, b], then v = min{v,max{v, d}}. If max{v, d} = d,
hen v ∈ min{[a, b], [c, d]} follows from v ∈ [a, b] and d ∈

[c, d]. If max{v, d} = v, then d < v ≤ b. This contradicts
∈ [min{a, c},min{b, d}].
If v /∈ [a, b], then either a ̸= min{a, c} or b ̸= min{b, d}. This is

quivalent to either c ≤ v < a or b < v ≤ d being true. b < v ≤ d
annot be true since v ∈ [min{a, c},min{b, d}]. c ≤ v < a implies
hat v ∈ [c, d] and v = min{v, a}, then v ∈ min{[a, b], [c, d]}. □

With Lemmas 3 and 4, we can analytically compute the fixed
oint set of an interval set-based Bellman operator and give
onvergence guarantees of interval set-based value iteration.

roposition 4. For interval sets C and V given by (25) and (26),
espectively, FC(V) as defined in Definition 5 is an interval set and
an be formulated as

C(V) = {V | V ≤ Vu, −V ≤ −Vl, V ∈ RS
},

or Vl = fC (V ) and Vu = fC (V ).
Furthermore, the sequence {Vk

}k∈N generated by the iteration
k+1

= FC(Vk) starting from any interval set V0 will converge to
⋆ in Hausdorff distance: for every ϵ > 0, there exists Vk which
atisfies

H (Vk,V⋆) ≤ ϵ/2, (30)

here (30) is satisfied if dH (Vk,Vk−1) 2γ
1−γ

< ϵ.

roof. We recall Definition 5 for the set-based Bellman operator
nd the component-wise definition of fC in Definition 1. Using
hese definitions and the fact that C = [C, C] and V = [V , V ] are
both interval sets, the set-based Bellman operator can be written
as(
FC(V)

)
s
= cl

⋃
C∈[C ,C ]

V∈[V ,V ]

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ .

Let G(Csa, V ) = Csa + γ
∑

s′∈[S] Ps′,saVs′ . G be a continuous func-
tion and order preserving in its inputs Csa and V . Therefore the
union over interval sets in

(
FC(V)

)
s can be written using interval

arithmetic notation as⋃
C∈[C ,C ]

V∈[V ,V ]

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ (31)

⎧⎨⎩min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ | C ∈ [C , C ], V ∈ [V , V ]

⎫⎬⎭ (32)

min
a∈[A]

[C sa, C sa] + γ
∑
s′∈[S]

Ps′,sa[V s′ , V s′ ]. (33)

ince interval sets are closed by definition, the closure of (31)
ust also equal (33). Therefore, F (V) can be equivalently written
C

9

component-wise as(
FC(V)

)
s
= min

a∈[A]

[C sa, C sa] + γ
∑
s′∈[S]

Ps′,sa[V s′ , V s′ ]. (34)

hen, γ > 0 and Ps′,sa ≥ 0 for all (s′, s, a) ∈ [S] × [S] × [A] allow
us to directly perform interval arithmetic component-wise for FC
as(
FC(V)

)
s
= min

a∈[A]

[
C sa + γ

∑
s′∈[S]

Ps′,saV s′ ,

C sa + γ
∑
s′∈[S]

Ps′,saV s′

]
(35a)

=

[
min
a∈[A]

C sa + γ
∑
s′∈[S]

Ps′,saV s′ ,

min
a∈[A]

C sa + γ
∑
s′∈[S]

Ps′,saV s′

]
(35b)

= [

(
fC (V )

)
s
,

(
fC (V )

)
s
], (35c)

where (35b) utilizes the interval set-based minimization derived
in Lemma 4, and (35c) follows from Definition 1.

The image of FC is another closed interval, as shown by (35c).
From Theorem 1, any interval set V0

= [V , V ] generates an
teration Vk+1

= FC(Vk) which satisfies limk→∞ FC(Vk) = V⋆.
We can use interval arithmetic to derive V⋆

= limk→∞ FC(Vk) =[
limk→∞ fC (V k), limk→∞ fC (V k)

]
= [V ⋆ , V ⋆ ], where V ⋆ and V ⋆ are

he fixed points of fC and fC , respectively.
At each iteration, the Hausdorff distance between Vk and V⋆

is given by dH (Vk,V⋆) = dH
(
[fC (V k), fC (V k)], [V ⋆ , V ⋆ ]

)
. Using

Lemma 3, dH (Vk,V⋆) is given by

max
{fC (V k) − V ⋆


∞

,

fC (V k) − V ⋆


∞

}
.

Similarly, dH (Vk+1,Vk) is given by

max
{ fC (V k) − fC (V k+1)


∞

,fC (V k) − fC (V k+1)


∞

}
.

From Lemma 1, if
fC (V k) − fC (V k+1)


∞

< ϵ
1−γ

2γ for some ϵ > 0,

then
fC (V k) − V ⋆


∞

< ϵ
2 . Similarly, if

fC (V k) − fC (V k+1)


∞

<

ϵ
1−γ

2γ for some ϵ > 0, then
fC (V k) − V ⋆


∞

< ϵ
2 . There-

fore if max
{fC (V k) − V ⋆


∞

,

fC (V k) − fC (V k+1)


∞

}
< ϵ, then

max
{fC (V k) − V ⋆


∞

,

fC (V k) − V ⋆


∞

}
< ϵ

2 . Since

H (Vk+1,Vk) = max
{ fC (V k) − V ⋆


∞
,
fC (V k) − fC (V k+1)


∞

}
and dH (Vk+1

− V⋆) = max
{ fC (V k) − V ⋆


∞
,
fC (V k) − V ⋆


∞

}
,

we conclude that if dH (Vk+1,Vk) <
(1−γ )ϵ

2γ , then dH (Vk+1
− V⋆) <

ϵ
2 . □

emark 3. In existing work, Vl is equivalent to the optimistic
value function in Iyengar (2005) when the transition kernel is
known and cost-uncertainty is given by bounded intervals. Fur-
thermore, Proposition 4 specializes interval value iteration from
Givan et al. (2000) to cost-uncertainty only and proves stronger
convergence results due to this specialization.

While Vk converges to V⋆ in Hausdorff distance, each Vk may
not over-approximate V⋆. In fact, if V k > V ⋆ for some k ∈ N,
hen V⋆ ⊊ Vk for all k. Nonetheless, we can still utilize Vk to
obtain an over-approximation of V⋆ by using estimate intervals
Ṽk+1

= [f (V k) − 1 ϵ, f (V k) + 1 ϵ].
C S C S
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Fig. 2. (a): Each player’s state space [S], S = 9. Green actions lead to a
eighbouring state and yellow actions are infeasible. (b): Actions space [A],
= 4. (For interpretation of the references to colour in this figure legend, the

eader is referred to the web version of this article.)

. Numerical example

Our set-based Bellman operator framework is motivated by
ynamic programming-based learning algorithms in stochastic
ames. We highlight this connection by applying set-based value
teration in a two-player single-controller stochastic game, and
how that both the transient and asymptotic behaviour of player
ne’s value function can be bounded, regardless of the opponent’s
earning algorithm.

We consider a two-player single-controller stochastic game
s defined in Definition 7. Each player solves a discounted MDP
iven by ([S], [A1,2], P1,2, C1,2, γ1,2) where A1 = A2 = A and
he players share an identical state–action space ([S], [A]). Player
ne’s cost is given by
1
sa(π2) = Csa + Jsbπ2(s, b), ∀ (s, a) ∈ [S] × [A],

hile player two’s cost is given by
2
sb(π1) = Csb − Jsaπ1(s, a), ∀ (s, b) ∈ [S] × [A].

he matrices C, J ∈ RS×A
+ are the same for C1 and C2.

While there exist algorithms that converge to the Nash equi-
ibrium for such single-controller stochastic games (Hu & Well-
an, 2003; Littman, 1994), convergence is not guaranteed if the
layers do not coordinate on which algorithm to use between
hemselves. We use the set-based Bellman operator to show
hat we can determine both the value function set that player
ne’s Nash equilibrium value function belongs to and the value
unction set that player one’s value function trajectory converges
o, regardless of what the player two does.

The state space of our stochastic game is a 3 × 3 grid, shown
in Fig. 2(a), where the total number of states is S = 9 and
the total number of actions per state is A = 4. State s′ is a
neighbouring state of s if it is immediately connected to s by a
green arrow in Fig. 2(a). At state s, letNs denote the set containing
all neighbouring states of s.

As shown in Fig. 2(b), the actions available in each state are
labelled ‘left’, ‘right’, ‘up’, or ‘down’. From each state s, an action
is feasible if it coincides with a green arrow in Fig. 2(a), and
infeasible if it coincides with a yellow arrow. For a feasible action
a, the target state s′ of state–action pair (s, a) is the neighbouring
state of s in the direction of the action a. When taking a feasible
action a, player one’s transition probability is given by

P1
s′sa =

⎧⎪⎨⎪⎩
0.7 s′ = target state

0.3
|Ns|−1 s′ ̸= target state, s′ ∈ Ns

0 otherwise.
(36)

f the action a is infeasible, player one’s transition probability is
iven by

1
s′sa =

{
1

|Ns|
s′ ∈ Ns

0 otherwise.
(37)
10
As given in Definition 7, the player two’s transition dynamic is
independent of player two’s actions.

We select matrices C, J ∈ R9×4 by uniformly sampling each
component from the interval [0, 1]. As in Example 2, the over-
approximation of player one’s feasible costs as interval sets is
given by

C =

{
C1

∈ R9×4
| C1

sa ∈ [Csa, Csa + Jsa],

∀ (s, a) ∈ [9] × [4]
}
, (38)

where the upper bound Csa + Jsa is achieved when player two’s
probability of taking action b = a from state s is 1.

We consider the two-player value iteration algorithm that
forms the basis for many learning algorithms in stochastic games
(Filar & Vrieze, 2012; Littman, 1994), summarized in Algorithm 1.
At step k, player one solves for the optimal policy π k+1 given by
the Bellman operator using (8). Player two obtains its optimal
policy using the function g : Π1 → Π2, we do not make any
assumptions on g beyond that it is entirely a function of π1.

Algorithm 1 Two-player value iteration

Input: ([S], [A], P1, C1, γ1), V0.
Output: V ⋆, π ⋆

1
π0
1 (s) = π0

2 (s) = 0, ∀ s ∈ [S]
for k = 0, . . . , do

C = C1(π k
1 , π

k
2 )

(V k+1, π k+1
1 ) = fC (V k)

π k+1
2 = g(π k+1

1 )
end for

Our analysis provides bounds on player one’s value function
when we do not know how player two is updating its policy —
i.e. when g is unknown. In simulation, we take g to be different
strategies and show that player one’s value functions are bounded
by the interval set analysis and converge towards the fixed point
set of the corresponding Bellman operator.

Suppose that both players update their policies via value it-
eration (8) under different discount factors. Player one performs
value iteration with a discount factor of γ1 = 0.7, while player
two performs value iteration with an unknown discount factor
γ2 ∈ (0, 1). Assuming both players’ value functions are initialized
to be 0 in every state, we simulate player one’s value function
trajectories for different values of γ2 in Fig. 3.

Fig. 3 shows that when player two utilizes different discount
factors, player one experiences different trajectories. However,
the value function trajectory that player one follows is always
bounded between the thresholds we derived from Proposition 3.
As Fig. 3 shows, there does not seem to be any direct correla-
tion between player two’s discount factor and player one’s value
function. The interval bounds we derived do tightly approximate
resulting value function trajectories.

Alternatively, suppose that both players have the same dis-
count factor but whether player two is minimizing or maximizing
its objective is unknown. In Fig. 4, we show player one’s value
function trajectories for both scenarios: maximizing C2 (player
one’s value functions is shown in dotted lines) and minimizing
C2 (player one’s value functions is shown in solid lines). The grey
egion shows the predicted bounds as derived from Proposition 3.
oth player one’s and player two’s initial value functions are
andomly initialized as V 0

1s,2s ∈ [0, 1], ∀ s ∈ [9].
As Fig. 4 shows, player two’s policy changes cause significant

shifts in player one’s value function trajectories. When player two
attempts to minimize its own cost, player one’s value function
achieves the lower bound as predicted by Proposition 4. This is
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Fig. 3. Player one’s value function as a function of the state at different time
steps k = {1, 49, 99}. For each k, the vertical blue lines represent the interval
et V = [V k, V

k
].

Fig. 4. The infinity norm of player one’s value function as a function of
iteration k. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

due to the fact that the player objectives do not conflict and at
least four actions with different costs are available at each state.
Since both players are only selecting from deterministic policies,
they are bound to select different actions unless all actions have
the exact same cost. On the other hand, if player two is maximiz-
ing its value function, then both players would precisely select the
same actions from every state. Then depending on the coupling
matrix J , they may or may not choose a less costly action at the
next step. This causes the limit cycle behaviour that the dotted
trajectories exhibit. In terms of the tightness of the bounds we
derived in Proposition 3, we note that Fig. 4 also demonstrates the
existence of trajectories approaching both the upper and lower
bounds of our fixed point set, therefore demonstrating that the
set-based bounds are tight in practice.

8. Conclusion

We have bounded the set of optimal value functions for the
et-based Bellman operator associated with a discounted infinite
orizon MDP. Our results are motivated by parameter-uncertain
DPs and value functions trajectories of a player in stochastic
ames. We demonstrate our example on a grid MDP and show
hat while player one’s value function does not converge, the
ausdorff distance between the value function and the fixed
11
point set of the set-based Bellman operator converges to zero.
Future work includes extending the set-based analysis to con-
sider uncertainty in the transition kernels to fully bounding value
function trajectories of learning algorithms in a general stochastic
game.
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