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ABSTRACT

Inspired by applications such as supply chain management, epidemics, and social
networks, we formulate a stochastic game model that addresses three key fea-
tures common across these domains: 1) network-structured player interactions,
2) pair-wise mixed cooperation and competition among players, and 3) limited
global information toward individual decision-making. In combination, these fea-
tures pose significant challenges for black box approaches taken by deep learning-
based multi-agent reinforcement learning (MARL) algorithms and deserve more
detailed analysis. We formulate a networked stochastic game with pair-wise gen-
eral sum objectives and asymmetrical information structure, and empirically ex-
plore the effects of information availability on the outcomes of different MARL
paradigms such as individual learning and centralized learning decentralized exe-
cution. We conclude with a two player supply chain to benchmark existing MARL
algorithms and contextualize the challenges at hand.

1 INTRODUCTION

A variety of critical infrastructure systems including supply chain logistics (Baryannis et al., 2019),
power grid (Zhang et al., 2018) and transportation network operations (Haydari & Yilmaz, 2020)
abstractly comprise of large, heterogeneous networks of self-interested decision-makers. In many
of these networked systems, the efficiency of the overall network depends on the collective behavior
of the self-interested participants. As new sensing and actuation modalities emerge, the entities
within these large-scale networks are increasingly turning to reinforcement learning to synthesize
policies for more efficient operations. Typically, each decision-making entity treats the environment
as stochastic and uses local observations and rewards to optimize their individual decisions. The
result is a network of reinforcement learning algorithms each with limited, sparse communication to
the rest of the network (Zhang et al., 2021).

MARL has had empirical success in applications such as robot coordination, and autonomous driv-
ing, to name a few. However, the typical multi-agent problems studied are such that the interaction
between agents is either purely cooperative or purely competitive in nature. In the theory of games
and economic behavior, on the other hand, there is a much richer and broader set of interaction mod-
els that are categorized by not just the reward structure, but also information structure and player dy-
namics (Başar & Olsder, 1998; Osborne & Rubinstein, 1994; Morgenstern & Von Neumann, 1953).
Differentiating between game classes assists in the classification of different solution approaches,
and enables better targeted algorithm development (Hopkins, 1999; Mazumdar et al., 2020).

Motivated by multi-agent problems with a network interaction structure, we explore the effects
that different information structures have on the performance of MARL algorithms. As model-
free learning approaches tend to treat the system dynamics as a black box between available input
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data (observations) and observed output (rewards), MARL algorithms are largely agnostic to the
game’s information structure. However, different information availability affects the quality of the
learning process, and can be leveraged in algorithm development to design the underlying neural
network architecture. To this end, traditional game-theoretic models can be exploited to gain greater
understanding of how information availability interacts with MARL algorithms.

In this paper, we formulate a networked stochastic game model and a supply chain toy example
to highlight the key features and associated challenges. Within the supply chain game example,
we demonstrate how the general sum player relationships differ from competitive vs collaborative
player relationships in existing models such as Hide and Seek (Baker et al., 2019), and highlight in-
formation structure challenges that may prevent the successful implementation of state-of-art MARL
algorithms to networked systems. By building our model around networked interaction, general sum
competition, and partial information, we hope to provide a game formulation from which reinforce-
ment learning algorithms can better cater to the given application domains. Finally, we summarize
shortcomings in current solution approaches with respect to networked stochastic games as well as
opportunities that can be exploited to improve algorithmic performance.

1.1 RELATED WORK

The dynamics of our networked stochastic game is similar to Qu et al. (2020), with the distinction
that we model continuous state-action spaces and assume each player is pursuing independent ob-
jectives instead of a centralized reward. In the continuous state-action domain, extensions of both
deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) and proximal policy optimization
(PPO) (Schulman et al., 2017) have had the greatest success in the multi-agent setting. Notable al-
gorithms include MADDPG Lowe et al. (2017), counterfactual multi-agent policy gradient Foerster
et al. (2018), and multi-agent PPO (MAPPO) Yu et al. (2021). However, both counterfactual multi-
agent policy gradient and MAPPO are designed for centralized rewards. Stochastic games under
asymmetrical information was formulated in Başar & Olsder (1998). In Nayyar et al. (2013), the
authors related the Nash equilibria of a N -player stochastic game with asymmetrical information to
the Markov perfect equilibria of a N -player stochastic game with symmetrical information.

2 NETWORKED STOCHASTIC GAMES

We consider a group of N players, each seeking to find an optimal policy for a Markov Decision
Process (MDP) that is coupled with its competitors. The coupling between players is specified by
a graph G = ([N ], E) where [N ] := {1, . . . , N}. The vertices of G correspond to the players and
an edge (i, j) ∈ E exists if players i and j are neighbors. The edges may be directed. The set of all
neighbors conected to player i is given by Ni.

More specifically, each player i ∈ [N ] seeks to find an optimal policy for the MDP
(Si,Ai, Ri, Pi, γi) where each of the elements in the tuple are characterized as follows:

1. The space of internal states for player i is Si ⊆ RSi .
2. The space of available actions to player i is denoted Ai ⊆ RAi . The action set Ai is

state-independent, such that every action ai ∈ Ai can be chosen from every si ∈ Si.
3. Player i’s transition kernel is denoted Pi : Si × Si × Ai × Di 7→ [0, 1] and satisfies∫

Si
Pi(s, s

′, a; d)∂s = 1,∀ d ∈ Di, a ∈ Ai, where Di = {(sj , aj) ∈ Sj ×Aj | ∀j ∈ Ni}
is the set pf state and actions of i’s neighboring players. Pi(si, s

′
i, ai; di) is player i’s

conditional probability of transition from state s′i to si by taking action ai if the neighboring
players are in state-action di.

4. Ri : Si ×Ai ×Di 7→ R is the reward function and may be stochastic.
5. γi ∈ (0, 1) is player’s discount factor in time.

Each player chooses a stationary policy πi : Si 7→ ρ(Ai), where ρ(Ai) denotes the set of
probability distribution over Ai. The actions of player i’s opponents are collectively denoted as
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ) and their policies denoted as π−i = (π1, . . . , πi−1, πi+1, πN ).

Players use their policy πi to maximize their infinite horizon expected return, conditioned on the
stationary joint opponent policies π−i, the initial state s(0) = [s1(0) . . . sN (0)], and defined as
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follows:

Ji(πi, π−i) = E(πi,π−i)
s(0)

[ ∞∑
t=0

γt
iRi

(
si(t), ai(t), di(t)

)]
. (1)

3 SUPPLY CHAINS

Supply chains exemplify the type of systems that networked stochastic games model. We develop a
detailed model here for a single-commodity supply chain with N chain components, i.e. the players.
In Appendix A, we present additional detailed examples of networked stochastic game models for
epidemics and competitive opinion dynamics in social networks.

We assume that each player is a selfish enterprise that is unilaterally trying to earn the largest share
of the overall supply chain profit. However, all players must coordinate to turn raw material into
profitable consumer goods. Players order raw material from its upstream suppliers and sells finished
products to its downstream retail venues. We assume that each player experiences some lead time
between ordering and receiving products and is aware that their listed product prices changes the
market demand. Our mathematical model of player dynamics is equivalent to a price-endogenous,
multi-period newsvendor with lead time in operations research (Dana Jr & Petruzzi, 2001).

3.1 STATES AND ACTIONS

Figure 1: Player i and its neighbors in a supply chain game.

We consider a directed graph G = ([N ], E) modeling the supply chain. The node set [N ] corresponds
to the set of players and the edge set E corresponds to the supplier-retailer relationships. A directed
edge exists from i to j if player i is player j’s supplier and if player j is player i’s retailer. Player i’s
suppliers collectively form the set S(i) and player i’s retailers collectively form the set R(i).

State. Player i’s internal state is si = [ci, µi, xi, yi] ∈ R|S(i)|+|R(i)|+ℓi+1
+ . The purchasing cost per

unit product from i’s suppliers is ci ∈ R|S(i)|
+ . The anticipated demand from player i’s retailers is

µi ∈ R|R(i)|
+ . The current stock level is xi ∈ R+ and the incoming stock replenishment in the next

ℓi time steps is yi ∈ Rℓi
+ . At time t, [yi(t)]n is the replenishment that arrives at time t+ n.

Action. Player i chooses the quantity of raw material to buy and the price per unit product to sell,
denoted as [qi, pi] ∈ R2N

+ . When j ∈ S(i), qij is the quantity i orders from j, otherwise qij = 0.
When k ∈ R(i), pik is the unit product price i offers to k, otherwise pik = 0.

We define some auxiliary variables to aid the definition of transition and rewards. The total demand
player i receives is given by

∑
j∈[N ] qji. The gap between player i’s total demand and player i’s

stock is given by wi = max{
∑

j∈[N ] qji − xi, 0}. When player i’s total demand exceeds available
stock, wi is positive and will be evenly distributed among player i’s retailers. Let dij be the realized
units of products that i delivers to j. dij is computed as follows:

dij =

{
max

{
qji − wi

|R(i)| , 0
}
, xi ≥

∑
j∈[N ] qji

qji xi <
∑

j∈[N ] qji
, ∀j ∈ R(i).
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3.2 STATE TRANSITIONS

Price and anticipated demand. At time t, the raw material price ci(t) is directly set by player i’s
suppliers and is equivalent to {pji(t), j ∈ S(i)}. The anticipated demand µi(t) is computed by
player i based on historical demand, µij(t) = fi(dji(0), dji(1), . . . , dji(t− 1)), where fi is a fore-
casting method employed by player i. Possible forecasting techniques are ARMAX (Thomassey,
2010) and machine learning (Bontempi et al., 2012).

Stock level and replenishment. The stock level at t + 1 is given by xi(t + 1) =
(
xi(t) −∑

j∈S(i) dji(t)
)
+

+ [yi(t)]1. The incoming stock replenishment transitions as [yi(t + 1)]k =

[yi(t)]k+1, for k = 1, . . . , ℓ − 1. The last incoming replenishment is the sum of all realized de-
mands from player i’s suppliers, [yi(t+ 1)]ℓi =

∑
j∈S(i) dji(t).

3.3 REWARDS

Each player’s reward is the total revenue subtracting operation expenditure and material cost. Op-
eration expenditure includes holding cost for current stock and loss of goodwill cost for unmet
demands. We assume that the holding cost scales linearly with hi ∈ R+ and the leftover stock level
after transition. The loss of goodwill cost scales linearly with wi ∈ R+ and the total unmet demand.

Ri(t) =
∑

j∈R(i)

pij(t)dij(t)︸ ︷︷ ︸
Total Revenue

−
∑

k∈S(i)

cik(t)dki(t)︸ ︷︷ ︸
Total Cost

−hi

(
xi(t)−

∑
j∈R(i)

dij(t)
)
+︸ ︷︷ ︸

Holding Cost

− wi

( ∑
j∈R(i)

dij(t)− xi(t)
)
+︸ ︷︷ ︸

Loss of Goodwill Cost

. (2)

3.4 INFORMATION STRUCTURE

We assume that the stochastic game has asymmetric information structure (Nayyar et al., 2013) and
that player i has access to information set Ii(t) ⊆

∏
i∈[N ] S(i) × A(i) at time t. Specifically, we

consider the following three levels of information asymmetry.

1. Private states and actions. When each player can only observe its own states and ac-
tions Ii(t) = {si(t), ai(t)}. This information setting most realistically models the current
supply chain operations. Each supply chain enterprise has limited information about its
opponents, and almost exclusively make decisions based on its projected demand, supply
costs, and incoming stock.

2. Public states and private actions. When players are willing to share its demand
forecasts and stock levels, but not the prices it charges among competitors, Ii(t) =
{s1(t), . . . , sN (t), ai(t)}. This information structure is motivated by existing research that
empirically demonstrates the benefits of forecast-sharing among enterprises within a supply
chain (Thomassey, 2010).

3. Public state and actions. We also investigate the information setting in which all
players have access to the full state-action information at each time step, Ii(t) =
{s1(t), . . . , sN (t), a1(t), . . . , aN (t)}.

In the absence of a prior on the parts of the state and action spaces that are unobservable under the
different information structures outlined above, it is not clear how players can optimize their reward
and subsequently, if any equilibrium concept exists. Because deep learning algorithm typically take
a black-box approach to learn the combined effects of information structure and system dynamics,
the learning process may result in stationary points that do not correlate to any meaningful game-
theoretic equilibria. It is important for the greater MARL community consider 1) how to interpret
these stationary points, and 2) how to develop theoretical analysis to gain further insight into the
black-box-type approachs.
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3.5 PAIR-WISE GENERAL SUM COMPETITION

We can demonstrate the general sum nature of the supply chain games using a simple two player
game. Suppose a two player supply chain game has zero lead time, raw materials prices P (q0), and
consumer demands Q(p1). Players are configured as shown in Figure 2.

Figure 2: Two player single commodity supply chain.

With zero lead time, player rewards (2) simplify to rewards become

R1 = p1Q(p1)− p0d10 + h1[s1 −Q(p1) + d10]+ + w1[Q(p1)− s1]+, (3)

R0 = p0d10 − P (q0)q0 + h0[s0 − d10 + q0]+ + w0[q1 − d10]+, (4)
where d10 = min{q1, s0} is the realized quantity transfer between players zero and one. The zero
sum component of the rewards is p0d10; player zero tries to maximize it while player one tries to
minimize it. The collaborative component is less obvious: when h0 + w0 << p0, and p1 << h1,
both players’ rewards will increase if d10 increases.

This type of network-induced, mixed competitive-collaborative environment is less represented by
toy examples in MARL. Most MARL frameworks with competitive elements focus on teams of
players where the team objectives directly conflict with other teams’ objectives and players within
a team share identical objectives (Terry et al., 2020). The resulting pair-wise interaction between
any two players is either fully coorperative or fully competitive. Whereas in networked stochastic
games, each pair of neighboring players have objectives that are partially competitive and partially
collaborative with one another.

3.6 EFFECT OF INFORMATION STRUCTURE ON MULTI-AGENT ACTOR CRITIC

Information availability is crucial to the applicability of MARL algorithms to networked stochastic
games and has strong implications for the training and execution methods. We adapt the multi-
agent actor-critic framework and describe how the different information structures from Section 3.4
modifies the actor critic type MARL paradigmns.

3.6.1 SINGLE AGENT ACTOR CRITIC

We first summarize single-agent actor critic methods to facilitate our discussion on the effect of
information structure on multi-agent actor critic methods. Actor critic methods are policy gradient
algorithms that solve a single agent MDP (S,A, R, P, γ) by iteratively estimating the policy π, and
the expected reward under a stationary π, defined as Qπ(s, a) = Eπ

s(0)

[∑T
k=t γ

tR(s(t), a(t))
]
.

The policy is approximated by an actor from a family of functions π(·, θ) 7→ ρ(A) parametrized
by θ ∈ RMa , and the expected reward is approximated by a critic from a family of functions
Q̂(·, ·;ω) 7→ R parametrized by ω. From initial parameter values (θ(0), ω(0)), the actor-critic
algorithm approximates the optimal policy π⋆ and the expected reward Qπ⋆

(s, a) by performing
gradient steps as follows:

θ(t+ 1) = θ(t) + αEπ(·,θ)
[
Qπ(·,θ)(s, a)

] ∣∣∣
θ=θ(t)

, (5)

ω(t+ 1) = ω(t) + βEπ(·;θ(t))
[(

Q̂pred (s, a, ω(t), θ(t+ 1))− Q̂(s, a, ω(t))
)
∇ωQ̂(s, a;ω(t))

]
,

(6)
Q̂pred(s, a, ω, θ) = R(s, a) + γEπ(·;θ)[Q̂(s′, a′, ω)],

where s = s(t), s′ = s(t + 1), a = a(t), a′ = a(t + 1), and α, β > 0 are the step sizes for the
parametrization parameters (Parisi et al., 2019).
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In the multi-agent extension, players each maintain their own actor and critic functions, but
the required state and action inputs for (5) and (6) becomes s(t) = (s1(t), . . . , sN (t)) and
a(t) = (a1(t), . . . , aN (t)). In networked systems such as supply chains, players tend to focus
on competition and try to gain the upper-hand by withholding information from its neighbors (Khan
et al., 2016). In actor critic methods, different information availability leads to different learn-
ing paradigms. We consider two different multi-agent paradigms under three different information
structures outline in Section 3.4.

(a) Individual learning with
private states and actions

(b) CLDE with public states and
private actions

(c) CLDE with public states and
actions

Figure 3: Actor-critic methods under different information structures.

3.6.2 INDIVIDUAL LEARNING

Assuming that players do not share any state-action information, individual learning dynamics is
akin to local actor-critics performed in a coupled environment. While individual learning has no
convergence guarantee even in the case of full state-action information, the partial observability of
joint state-action space adds an extra dimension of difficulty towards algorithm convergence.

3.6.3 CENTRALIZED LEARNING, DECENTRALIZED EXECUTION

A popular multi-agent learning paradigm is centralized learning for decentralized execution
(CLDE) (Lyu et al., 2021), exemplified in both collaborative and competitive settings by Lowe et al.
(2017) and Foerster et al. (2018). Under the CLDE framework, players share some of their private
state information with all other players. In the supply chain scenario, state information includes
player inventory and forecasts, and player action corresponds to information on the cost and prices
charged among competitors. One can imagine that while inventory and demand forecast information
warrant privacy concerns, cost and prices charged among competitors is much more classified and
could be difficult for players to share. We therefore consider two levels of information sharing: level
one where players share only states, and level two where players share both states and actions. The
resulting actor critics are summarized in Figure 3.

4 TWO PLAYER, SINGLE-COMMODITY SUPPLY CHAIN

To demonstrate the performance of actor critic methods on networked stochastic games, we construct
a simple two player, single-commodity example. In this example, two players - a supplier (player
zero) and a retailer (player one) form a single-commodity supply chain between a raw materials
market and a consumer market as shown in Figure 2.

Player objectives are defined in (2). We assume the raw material market is demand insensitive,
such that P (q0) = 0.5 per unit product. The consumer demand is price sensitive, such that Q(p1) =
10−2p1+0.05ϵ, where ϵ ∼ N (0, 1) is a Gaussian noise. Holding cost coefficient is h0 = h1 = 0.05,
goodwill coefficient is w0 = w1 = 0.1.

Traditionally in supply chain literature, the total profit of the entire supply chain is optimized. We
can apply the actor critic method to solve the total profit scenario: the actor takes the joint state
as the input, the critic takes the joint state-action as the input, and the reward being optimized is∑2

i=1 Ri(si, ai; di). The resulting rewards and player actions are shown in Figure 4.

While the total reward is maximized, the profit distribution heavily favors player 0, and therefore
discourages player 1 from participating in the centralized scheme. Next, we consider MADDPG
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Figure 4: Learning trajectory of the centralized reward scenario with actor-critic method.

with three different levels of information access: individual learning, sharing states during training
and execution, and sharing states and actions during training and sharing states during execution
(MADDPG). The results are shown in Figure 5.
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Figure 5: Learning trajectories of actor-critic methods under different information assumptions.
Each plot shows the mean and variance across 100 randomly seeded trials.

We compare the three different information structures in terms of the optimality achieved by each
player’s policy, stability of the learning process, total chain throughput and inefficiency. Optimal-
ity and stability are typical training benchmarks to evaluate algorithm performance. Total chain
throughput is the total unit products delivered to the consumer market. We can infer the total chain
throughput by quantities ordered by both players. Inefficiency refers to the total amount of prod-
ucts produced by the chain but is not available to customers. In the two player supply chain, the
inefficiency is characterized by (q0(t)− q1(t))+.

In the individual RL setting, player rewards and policies both stabilize. However, player 1’s reward
is significantly lower than player 0’s reward. Throughout the training process, player 0 consistently
orders more products than player 1, implying inefficiency in the supply chain. Finally, the individual
learning setting seems to achieve the greatest chain throughput among all three information settings.
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The sharing state and action scenario also achieves the most stable learning dynamics, albeit at
much lower profit for player 0, but greatly reducing player 1’s losses. However, the gap of ordered
quantities between the two players is significantly lower than the individual learning case, resulting
in higher chain efficiency. This fact is quite intuitive - if player 0 can see player 1’s inventory levels,
player 0 can better predict player 1’s demand and therefore order accordingly.

Finally, we note that the MADDPG setting with similar hyperparameters as the previous two scenar-
ios did not converge, and appear to become increasingly more unstable around the 8000th episode.
Furthermore, the chain throughput appears to be near zero through out the first 10000 episodes,
which can be interpreted as both players had quit the chain and are not producing any products to
meet consumer demand. The prices converging to exceptionally high values also reflects this.

5 CONCLUSION

In this paper, we addressed a key structure in emerging applications of MARL to large-scale op-
eration management problems. We formulate these problems as networked stochastic games, and
demonstrate how they apply to supply chains, epidemics, and opinion dynamics in social networks.
We discussed some problems associated with solving these networked stochastic games with multi-
agent reinforcement learning and discussed its implications for actor critic type algorithms. Future
work include concretely demonstrating how information asymmetry may obscure the Nash equilib-
rium and relating supply chain performance metrics to supply chain graph metrics including con-
nectivity and diameter.
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021.

A APPENDIX

We provide two additional examples of systems that can be modeled as networked stochastic games.

Geophysical epidemic network. Networked stochastic games can model the spread of virus in a
geophysical network. Consider a finite number of cities [N ] undergoing an epidemic outbreak where
the virus is nonfatal and has no vaccines or cures. To minimize the outbreak, each city can choose to
impose lockdowns of varying severity and reserve medical effort towards exclusively curing infected
patients.

We model the cities as nodes on graph G and the transportation connections between cities as e =
(i, j) ∈ E . Each player has two internal states si(t) = [hi(t) pi(t)] ∈ R2, where hi and pi
represent the number of healthy individuals and patients in city i, respectively. Player actions are
given by ai(t) = [ℓi(t), νi(t)], where ℓi ∈ [0, 1] is the level of lockdown in city i and νi ∈ [0, 1] is
the medical effort dedicated towards curing infected patients. The rate at which healthy individuals
become patients is given by

(
1− exp(−ℓi(t)−

∑
j∈Ni

αijℓj(t))
)
hi(t), where αij ∈ [0, 1] denotes
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the connectivity of cities i, j. The rate at which patients recover is given by δi ∼ N (νi(t), σi). Each
city’s healthy and infected population evolve over time as

hi(t+ 1) =
(
1− exp

(
− ℓi(t)−

∑
j∈Ni

αijℓj(t)
))

hi(t) + δi(t)pi(t) (7)

pi(t+ 1) = (1− δi(t))pi(t) + exp(−ℓi(t)−
∑
j∈Ni

αijℓj(t))hi(t) (8)

Each city receives a reward that is positively correlated with the number of healthy individuals and
negatively correlated with the lockdown level and effort spent towards curing patients.

Ri(t) = h2
i (t)−Qiiℓ

2
i (t)− Piiν

2
i (t), Qii, Pii ∈ R+, ∀i ∈ [N ].

Opinion dynamics in social networks. We consider a multi-agent consensus dynamic that models
the spread of information through a social network with a leader(CITE). Consider a set of players
[N ] connected on an undirected graph G = ([N ], E), where player 1 is the leader, and aij = aji is
edge (i, j)’s weight. Each player’s opinion in S different topics is represented by xi ∈ RS . Players
do not directly observe their own states, but instead observes the net error between his own opinion
and his neighbors’ opinions, ei =

∑
j∈Ni

aij(xi − xj). Based on ei, players choose an action ui,
and see its opinions evolve in time t as

xi(t+ 1) = Aixi(t) +Biui(t), ∀i ∈ [N ].

Each player’s reward is given by

Ri(t) =
∑
j∈Ni

(xi(t)− xj(t))
2Qii + ui(t)

2Rii, Qii, Rii ∈ R+.
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