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aDepartment of Aeronautics and Astronautics, University of Washington, Seattle, USA. (e-mail:{sarahli, behcet}@uw.edu).
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Abstract

This paper analyzes finite state Markov Decision Processes (MDPs) with uncertain parameters in compact sets and re-examines
results from robust MDP via set-based fixed point theory. To this end, we generalize the Bellman and policy evaluation
operators to contracting operators on the value function space and denote them as value operators. We lift these value operators
to act on sets of value functions and denote them as set-based value operators. We prove that the set-based value operators are
contractions in the space of compact value function sets. Leveraging insights from set theory, we generalize the rectangularity
condition in classic robust MDP literature to a containment condition for all value operators, which is weaker and can be
applied to a larger set of parameter-uncertain MDPs and contracting operators in dynamic programming. We prove that
both the rectangularity condition and the containment condition sufficiently ensure that the set-based value operator’s fixed
point set contains its own extrema elements. For convex and compact sets of uncertain MDP parameters, we show equivalence
between the classic robust value function and the supremum of the fixed point set of the set-based Bellman operator. Under
dynamically changing MDP parameters in compact sets, we prove a set convergence result for value iteration, which otherwise
may not converge to a single value function. Finally, we derive novel guarantees for probabilistic path planning problems in
planet exploration and stratospheric station-keeping.
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1 Introduction

Markov decision process (MDP) is a versatile model for
decisionmaking in stochastic environments and is widely
used in trajectory planning [1], robotics [22], and oper-
ations research [4]. Given state-action costs and transi-
tion probabilities, finding an optimal policy of the MDP
is equivalent to solving for the fixed point value function
of the corresponding Bellman operator. Known as dy-
namic programming approaches, the resulting solutions
extend to the dynamic-free setting via value-based rein-
forcement learning [20].

Many application settings of MDPs, including traffic
light control, motion planning, and dexterous manip-
ulation, deal with environmental non-stationarity—
dynamically changing MDP cost and transition prob-
abilities due to external factors or the presence of

‹ This paper was not presented at any IFAC meeting. Cor-
responding author Sarah H.Q. Li. Email. sarahli@uw.edu.

interfering decision makers. This environmental non-
stationarity corresponds to uncertainty in the MDP
transition and cost parameters and differs from an
MDP’s internal stochasticity, which corresponds to sta-
tionary MDP transition and cost parameters and mod-
els the stochastic dynamics whose probability distribu-
tions do not change over time. Under environmental
non-stationarity, robust MDP, risk-sensitive reinforce-
ment learning, and zero-sum stochastic games derive
policies for the optimal worst-case performance—value
functions that result from adversarial selections of the
MDP parameters. A standard approach is to take an
appropriate Bellman operator-variant and solve for its
fixed point using a minmax formulation. By assuming
that the MDP parameters are chosen adversarially,
the worst-case approach is able to derive asymptotic
bounds of the value function trajectory affected by the
parameter non-stationarity.

Much of the robust MDP literature focuses on the
worst-case analysis of the MDP policy improvement and
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MDP policy evaluation problem under a rectangularity
assumption on a set of MDP parameters. Mathemat-
ically, these problems correspond to the Bellman and
policy evaluation operators. However, recent progress
in learning-based methods utilizes other contraction
operators such as Q-learning [23] and temporal differ-
ence [21]. In order to broaden the application of our
results, we ground our analysis in a more general class
of value operators, and ask the following question from
a less adversarial perspective: is it possible to charac-
terize the transient behavior of an MDP contraction
operator with dynamically changing parameters?

Contributions. For compact sets of finite state MDP
parameter uncertainties, we propose the set-extensions
of value operators: a general class of contraction opera-
tors that are order-preserving on the space of value func-
tions and Lipschitz in the space of MDP parameters. We
prove the existence of compact fixed point sets of the set-
based value operators and show that the set-based value
iteration converges. In a non-stationary Markovian en-
vironment, standard value iteration may not converge.
However, we can show that the point-to-set distance of
the resulting value function trajectory to the fixed point
set always goes to zero in the limit. We derive a contain-
ment condition that is sufficient for the fixed point sets
to contain their own extremal elements. Within robust
MDPs, we show that the containment condition general-
izes the rectangularity condition, such that the optimal
worst-case policy, or the robust policy, exists when the
containment condition is satisfied. We then derive the
relationship between the fixed point sets of 1) the set-
based optimistic policy evaluation operator, 2) the set-
based robust policy evaluation operator, and 3) the set-
based Bellman operator. Given a value operator and a
compact MDP parameter uncertainty set, we present an
algorithm that computes the bounds of the correspond-
ing fixed point set and derive its convergence guaran-
tees. Finally, we apply our results to the wind-assisted
navigation of high altitude platform systems relevant to
space exploration [25] and show that our algorithms can
be used to derive policies with better guarantees.

Related research. MDP with parameter uncertainty is
well studied in robust control and reinforcement learn-
ing. In control theory, the worst-case cost-to-go with re-
spect to state-decoupled parameter uncertainties is de-
rived via a minmax variation of the Bellman operator
in [5, 8, 15, 24]. The cost-to-go under parameter uncer-
tainty with coupling between states and time steps is
similarly bounded in [6, 12]. The effect of statistical un-
certainty on the optimal cost-to-go is studied in [12, 15,
24, 26]. Recently, MDP with parameter uncertainty has
gained traction in the reinforcement learning community
due to the presence of uncertainty in real world problems
such as traffic signal control and multi-agent coordina-
tion [9, 10, 16]. Most RL research extends the minmax
worst-case analysis to methods such as Q-learning and
SARSA. Recently, methods for value-based RL using

non-contracting operators have been investigated in [3].

As opposed to the worst-case approach to analyzing
MDPs under parameter uncertainty, we do not assume
adversarial MDP parameter selection. Instead, we derive
a set of cost-to-gos that is invariant with respect to com-
pact parameter uncertainty sets for order-preserving, α-
contracting operators, a class that the Bellman operator
belongs to. We continue from our previous work [11], in
which we analyzed the set-based Bellman operator for
cost uncertainty only.

Notation: A set of N elements is given by rN s “

t0, . . . , N ´ 1u. We denote the set of matrices of i rows
and j columns with real (non-negative) entries as Riˆj
(Riˆj` ), respectively. Matrices and some integers are
denoted by capital letters, X, while sets are denoted
by cursive typeset X . The set of all compact subsets of
Rd is denoted by KpRdq. The column vector of ones of
size N P N is denoted by 1N “ r1, . . . , 1sT P RNˆ1. The
identity matrix of size S is denoted by IS . The simplex
of dimension S is denoted by

∆S “ tp P RS | 1J
Sp “ 1, p ě 0u. (1)

A vector h P RS has equivalent notation ph1, . . . , hsq,
where hs is the value of h in the sth coordinate, s P rSs.
Throughout the paper, ∥¨∥ denotes the infinity norm in
RS .

2 Discounted infinite-horizon MDP

A discounted infinite-horizon finite state MDP is given
by prSs, rAs, P, C, γq, where γ P p0, 1q is the discount
factor, rSs “ t1, . . . , Su is the finite set of states and
rAs “ t1, . . . , Au is the finite set of actions. Without
loss of generality, assume that each action is admissible
from each state s P rSs.

MDP Costs. C P RSˆA is the matrix encoding the
MDP cost. Each Csa P R is the cost of taking action
a P rAs from state s P rSs. We also denote the cost of
all actions at state s by cs “ rCs1, . . . , CsAs P RA, such
that C “ rc1, . . . , cSsJ.

MDP Transition Dynamics. The transition proba-
bilities when action a is taken from state s are given
by psa P ∆S . Collectively, all possible transition prob-
abilities from state s P rSs are given by the matrix
Ps “ rps1, . . . , psAs P ∆A

S Ă RSˆA, and all possible tran-
sition probabilities in the MDP are given by the matrix
P “ rP1, . . . , PSs P ∆SA

S Ă RSˆSA.

MDP Objective. We want to minimize the expected
cost-to-go, or the value vector V P RS , defined per
state as

Vs :“ Es
!

ř8

t“0 γ
tCstat | s0 “ s

)

, @ s P rSs, (2)
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where Est¨u is the expected value of the input with re-
spect to initial state s, and (st, at) are the state and ac-
tion at time t. The value vector can be minimized by the
choice of actions at at every time step t:

V ‹
s :“ minatPrAs Es

!

ř8

t“0 γ
tCstat | s0 “ s

)

, @ s P rSs,

(3)

Remark 1 Although value function is the standard term
for the expected cost-to-go, we use value vector in this
paper to emphasize that the cost-to-go values of finite
MDPs belong in a finite dimensional space.

MDP Policy. We optimize the objective (3) via a pol-
icy, denoted as π “ rπ1, . . . , πSs P ∆S

A, where the ath

element of πs P ∆A is the conditional probability of ac-
tion a being chosen from state s. Under policy πs, the
expected immediate cost at s is given by cJ

s πs P R and
the expected transition probabilities from s is given by
Psπs P ∆S .

2.1 Value operators

Solving an MDP is equivalent to finding the value vec-
tor and the associated policy that minimizes the objec-
tive (3). Typical solution methods utilize order preserv-
ing [19, Def.3.1], α-contractive operators whose fixed
points are the optimal value vectors (e.g. Bellman oper-
ator [17, Thm.6.2.3], Q-value operator [13]).

Definition 2 (α-Contraction) Let pX , dq be a metric
space with metric d. The operator H : X ÞÑ X is an α-
contraction if and only if there exists α P r0, 1q such that

dpHpV q, HpV 1qq ď αdpV, V 1q, @ V, V 1 P X . (4)

Definition 3 (Order Preservation) Let pX ,ďq be an
ordered space with partial order ď. The operator H :
X ÞÑ X is order preserving if for all V, V 1 P X such that
V ď V 1, HpV q ď HpV 1q.

These operators are typically locally Lipschitz in MDP
parameter space.

Definition 4 (KpV q-Lipschitz) Let pX , dX q be a met-
ric space with metric dX and pY, dY q be a metric space
with metric dY . The operator H : X ˆ Y ÞÑ X is KpV q-
Lipschitz with respect to M Ă Y if for all V P X , there
exists KpV q P R` such that

dX pHpV,mq, HpV,m1qq ď KpV qdYpm,m1q, @m,m1 P M.
(5)

Remark 5 The α-contraction property is a special in-
stance of Lipschitz continuity in which the input and out-
put spaces are identical and the Lipschitz constant is less
than 1.

Fig. 1. Illustration of the three value operator properties. (a)
α-contraction on RS , (b) Order preservation on RS , and (c)
KpV q-Lipschitz in input space M.

To capture operators with these properties, we define a
value operator that takes inputs: value vector, MDP
cost, and MDP transition probability. The MDP cost
and transition probability are selected from an MDP
parameter set M.

Definition 6 (Value operator) Consider the opera-
tor h,

h : RS ˆ M ÞÑ RS , M Ď RSˆA ˆ ∆SA
S . (6)

We say h (6) is a value operator on RS ˆ M if

(1) For all m P M, hp¨,mq is an α-contraction in RS.
(2) For all m P M, hp¨,mq is order preserving in RS.
(3) For all V P RS, hpV,mq is KpV q-Lipschitz on M.

Remark 7 While we only consider value operators
whose input’s first component is RS, Definition 6 and the
subsequent results can be extended to the space ofQ-value
functions by swapping RS for RSA in Definition 6 [13].

An immediate consequence of the value operator h being
an α-contractive and order-preserving operator on RS is
that h is continuous on RS ˆ M.

Lemma 8 (Continuity) If h (6) is a value operator on
RS ˆ M, h is continuous on RS ˆ M.

PROOF. Let pV,mq P RS ˆ M and consider
a sequence tpVk,mkqukPN Ă RS ˆ M that con-
verges to pV,mq. It holds that ∥hpVk,mkq ´ hpV,mq∥
ď ∥hpVk,mkq ´ hpV,mkq∥ ` ∥hpV,mkq ´ hpV,mq∥,
where from the α-contractive property of hp¨,mkq,
∥hpVk,mkq ´ hpV,mkq∥ ď α ∥Vk ´ V ∥. From theKpV q-
Lipschitz property of hpV, ¨q,

∥hpV,mkq ´ hpV,mq∥ ď KpV q ∥mk ´m∥ .

As both limkÑ8 ∥Vk ´ V ∥ Ñ 0 and limkÑ8 ∥mk ´m∥ Ñ

0, ∥hpVk,mkq ´ hpV,mq∥ Ñ 0 and h is continuous. l

We make the following assumption on the MDP param-
eter set M with respect to h.
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Assumption 9 (Containment condition) The
MDP parameter set M satisfies the containment condi-
tion with respect to h ifM is compact and for all V P RS,
č

sPrSs

argmin
mPM

hspV,mq ‰ H,
č

sPrSs

argmax
mPM

hspV,mq ‰ H.

(7)

Fig. 2. We illustrate argmaxmPM hspV,mq for a value opera-
tor h when S “ 2. Here, argmaxmPM h1pV,mq “ tm2,m3u,
argmaxmPM h2pV,mq “ tm1,m2u. Therefore, m2 is the
common parameter that achieves maxmPM hspV,mq for all
s P rSs.

Remark 10 Assumption 9 is an h-dependent condition
imposed on the structure of M, and is independent of
M’s convexity and connectivity.

2.2 Bellman and policy evaluation operators

Examples of value operators include the Bellman op-
erator and the policy evaluation operators when the
MDP cost and transition probability are input parame-
ters rather than fixed parameters.

Definition 11 (Policy evaluation operator) Given
a policy π P Π, the vector-valued operator gπ “

pgπ1 , . . . , g
π
Sq : RS ˆ RSˆA ˆ ∆SA

S ÞÑ RS is defined per
state as

gπs pV,C, P q :“ cJ
s πs ` γ

´

Psπs

¯J

V, @s P rSs. (8)

Given pC,P q, gπp¨, C, P q : RS ÞÑ RS is a vector-valued
operator whose fixed point is the expected cost-to-go
of the MDP prSs, rAs, C, P, γq under π, denoted as
V πpC,P q [17, Thm.6.2.5].

V πpC,P q “ gπpV π, C, P q, V πpC,P q P RS . (9)

When the context is clear, we denote V πpC,P q as V π.

Definition 12 (Bellman operator) The vector-
valued operator f “ pf1, . . . , fSq : RS ˆRSˆA ˆ∆SA

S ÞÑ

RS is defined per each state as

fspV,C, P q :“ inf
πsP∆A

gπs pV,C, P q, @ s P rSs. (10)

The corresponding optimal policy π‹ “ pπ‹
1 , . . . , π

‹
sq is

defined per state as π‹
s P argminπs

gπs pV,C, P q (10) and

satisfies 1J
Sπ

‹
s “ 1 @s P rSs. One such policy is defined

for all ps, aq P rSs ˆ rAs by

π‹
s,a :“

$

&

%

ą 0 a P argmin
aPrAs

Csa ` γpJ
saV,

0 otherwise.
(11)

where argminaPrAsphq is the set of minimizing actions for

the function h. An optimal policy in the form (11) always
exists for a discounted infinite horizon MDP [17, Thm
6.2.10]. Given parameters pC,P q, fp¨, C, P q : RS ÞÑ

RS is a vector operator whose fixed point is the opti-
mal cost-to-go for the MDP prSs, rAs, P, C, γq, denoted
as V BpC,P q.

V BpC,P q “ fpV B , C, P q, V BpC,P q P RS . (12)

When the context is clear, we denote V BpC,P q as V B .

We show that both (8) and (10) are value operators.

Lemma 13 The Bellman operator (10) and the policy
evaluation operators (8) for all π P Π are value operators
on RS ˆ M where M Ď RSˆA ˆ ∆SA

S (6).

PROOF. We show that both the Bellman operator f
and the policy evaluation operator gπ satisfy the contrac-
tive, order preserving and Lipschitz properties given in
Definition 6. Contraction: given pC,P q P M, gπp¨, C, P q

and fp¨, C, P q are both γ-contractions [17, Prop.6.2.4]
on the complete metric space pRS , ∥¨∥8q, where γ ă 1 is
the discount factor.

Order preservation: given pC,P q P M, the operator
gπp¨, C, P q is order preserving [17, Lem.6.1.2]. Con-
sider U, V P RS where U ď V . If gπp¨, C, P q is order-
preserving, gπpU,C, P q ď gπpV,C, P q for all π P Π.
Taking the infimum over Π, we have fpU,C, P q “

infπPΠ g
πpU,C, P q ď infπPΠ g

πpV,C, P q “ fpV,C, P q.

KpV q-Lipschitz: given pC,P q, pC 1, P 1q P M and V P RS ,
let π̂ (11) be the optimal policy for fpV,C 1, P 1q and π‹

be the optimal policy for fpV,C, P q. For s P rSs, suppose
fspV,C

1, P 1q ě fspV,C, P q, then 0 ď fspV,C
1, P 1q ´

fspV,C, P q ď pc1
sq

Jπ̂s´cJ
s π

‹
s`γpP 1

sπ̂sq
JV ´γpPsπ

‹
sqJV .

Since π‹ is sub-optimal for fpV,C 1, P 1q, we can upper
bound |fspV,C

1, P 1q ´ fspV,C, P q| ď pc1
s ´ csq

Jπ‹
s `

γrpP 1
s ´ Psqπs

‹sJV . We conclude that

|fspV,C
1, P 1q ´ fspV,C, P q|

ď
∥∥c1
s ´ cs

∥∥
8

`γ
∥∥P 1

s ´ Ps
∥∥

8
maxt∥π‹

s∥8 , ∥π̂s∥8u ∥V ∥8 .

(13)
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Since π‹
s , π̂s P ∆A, ∥π‹

s∥8 ď 1 and ∥π̂s∥8 ď 1. By similar
arguments, (13) is true if fspV,C

1, P 1q ď fspV,C, P q.
We can upper bound fpV,mq ´ fpV,m1q “ f ´ f 1 as∥∥f ´ f 1

∥∥
8

ď max
sPrSs

t
∥∥c1
s ´ cs

∥∥
8

` γ
∥∥pPs ´ P 1

sq
JV

∥∥
8

u

(14)

ď maxp1, γ ∥V ∥8q
∥∥m´m1

∥∥
8
. (15)

The policy evaluation operator gπ satisfies (13) if
maxt∥π‹

s∥8 , ∥π̂s∥8u is replaced by ∥πs∥8. Since
∥πs∥8 ď 1, gπ is KpV q-Lipschitz. l

Remark 14 Beyond the policy evaluation operator and
the Bellman operator, many algorithms in reinforcement
learning can be reformulated using value operators. For
example, it’s not difficult to show that the Q-learning
operator [13] is a value operator on the vector space RSA.

2.3 Containment-satisfying MDP parameter sets

Assumption 9 restricts the structure of M with respect
to the value operator h. Thus whether or notM satisfies
Assumption 9 must always be determined with respect
to the operator h. With respect to the Bellman opera-
tor f (10) and the policy evaluation operators gπ (8),
the following conditions in robust MDP are sufficient to
satisfy Assumption 9.

Definition 15 (ps, aq-rectangular sets [8, 15]) The
uncertainty setM Ă RSˆAˆ∆SA

S is ps, aq-rectangular if

M “
ą

ps,aqPrSsˆrAs

Msa, Msa Ă Rˆ∆S , @ps, aq P rSsˆrAs.

(16)

Intuitively, ps, aq-rectangularity implies that the MDP
parameter uncertainty is decoupled between each state-
action. A more general condition is if the parameter un-
certainty is decoupled between different states but not
between different actions within the same state.

Definition 16 (s-rectangular sets) The uncertainty
set M Ă RSˆA ˆ ∆SA

S is s-rectangular if

M “
ą

sPrSs

Ms, Ms Ă RA ˆ ∆A
S , @s P rSs. (17)

s-rectangularity generalizes ps, aq-rectangularity—i.e.
ps, aq-rectangularity implies s-rectangularity.

Example 17 (Wind uncertainty) Consider an
MDP in which the states correspond to geographical co-
ordinates, the actions correspond to navigation choices
(up, down, left, right), and the transition probabilities

Fig. 3. MDP with parameter coupling in transition proba-
bility across different states.

correspond to the local wind patterns that vary betweenN
major wind trends over time per state. At state s P rSs,
the transition probabilities of trend i P rN s are given
by P is . If the wind pattern strictly switches between the
discrete wind trends, then the transition uncertainty at
state s P rSs is Ps “ tP 1

s , . . . , P
N
s u. If the wind pattern

is a mixture of the discrete wind trends, the transition
uncertainty at state s P rSs is Ps “ t

ř

i αiP
i
s | α P ∆Nu.

Both wind patterns lead to s-rectangular uncertainty,
given by P “

Ś

sPrSs Ps.

We show that the rectangularity conditions indeed are
sufficient for satisfying Assumption 9 with respect to
f (10) and gπ (8).

Proposition 18 If M is compact and s-rectangular
(Definition 16), M satisfies Assumption 9 with respect
to f (10) and gπ (8) for all π P Π.

PROOF. We first show that M satisfies Assumption 9
with respect to the Bellman operator. Given s P rSs,
fspV,C, P q only depends on the s component ofC andP .
From Lemma 8, fs is continuous in pcs, Psq. Let pc‹

s, P
‹
s q

be the solution to argminpcs,PsqPMs
fspV,C, P q for all

@ s P rSs. If Ms is compact, pc‹
s, P

‹
s q P Ms. We can

construct C‹ “ rc‹
1, . . . , c

‹
Ss and P ‹ “ rP ‹

1 , . . . , P
‹
Ss. If

M is s-rectangular, then pC‹, P ‹q P M and pC‹, P ‹q P

argminmPM fspV,C, P q for all s P rSs. We conclude that
M satisfies Assumption 9.

Given π P Π and s P rSs, gπs only depends on cs and Ps as
well. We can similarly show that there exists an optimal
parameter pC‹, P ‹q P argminpC,P qPM gπs pV,C, P q for all

s P rSs such that pC‹, P ‹q P M. l

Beyond s-rectangularity, there are sets that satisfy As-
sumption 9 with respect to specific value operators.

Example 19 (Beyond rectangularity) In Figure 3,
we visualize a four state MDP with transition uncer-
tainty M parameterized by α. MDP states are the nodes
and MDP actions are the arrows. Actions that transition
to multiple states are visualized by multi-headed arrows.
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Each head has an associated tuple pcsa, psa,s1 q denoting
its state-action cost and transition probability. All states
have a single action except for state s4, where two ac-
tions exist and are distinguished by different colors. Both
s2 and s3 are absorbing states with a unique action, such
that V2 “ 1

1´γ and V3 “ 0 for both f and gπ for all π P Π,

where γ is the discount factor.

The states s1 and s4 have transition uncertainty
parametrized by α P r0, 1s. Therefore, M violates s-
rectangularity (Definition 16). The optimal cost-to-go
values V1 and V4 occur at different α’s. Therefore, M
violates Assumption 9 with respect to f . However, sup-
pose that at s4, we only consider policies that exclusively
choose the action colored green in Fig. 3. Then the ex-
pected cost-to-go at s4, V4, is independent of α. The
minimum and maximum values of V1 under π occur
at α “ 1 and α “ 0, respectively. Therefore, M sat-
isfies Assumption 9 with respect to operator gπ for all
π “ rπs1 , . . . , πs4s where πs4 “ r1, 0s.

3 Set-based value operators

Motivated by the uncertain MDP parameters encoun-
tered in robust MDP, stochastic games, and reinforce-
ment learning in uncertain environments, we now con-
sider value operators with respect to a compact set of
uncertain MDP parameters. To understand the effect of
both stationary and dynamic parameter uncertainty on
the value vector, we extend value operators to set-based
value operators, and prove the existence of fixed point
sets on the space of compact subsets of RS .

To facilitate our set-based analysis, we first introduce
Hausdorff-type set distances.

Definition 20 (Point-to-set Distance) The dis-
tance between a value vector and a set V Ď RS is given by

W ÞÑ dpW,Vq :“ inf
V PV

∥W ´ V ∥ . (18)

On the space of compact subsets of RS , given by KpRSq,
the distance between value vector sets extends (18) and
is given by the Hausdorff distance [7].

Definition 21 (Set-to-set Distance) The Hausdorff
distance between two value vector sets V,W Ď RS is
given by

dKpV,Wq :“ max

"

sup
V PV

dpV,Wq, sup
WPW

dpW,Vq

*

. (19)

We use pKpRSq, dKq to denote the metric space formed
by the set of all compact subsets of RS under the Haus-

Fig. 4. Illustration of the set-based operator HpVq applied
to the singleton set V “ tV u Ă RS , we compute hpV,mq

for every parameter m P M and collect the output hpV,mq,
such that HpVq “ YmPMhpV,mq.

dorff distance dK. The induced Hausdorff space is com-
plete if and only if the original metric space is com-
plete [7, Thm 3.3]. Therefore, pKpRSq, dKq is a complete
metric space.

For a value operator h (6), we ask the following question:
what is the set of possible value vectors when the MDP
has parameter uncertainty given by M? To resolve this,
we define the set-based value operator H.

Definition 22 (Set-based Value Operator) The
set-valued operator H is induced by h on RS ˆ M (6)
and is defined as

HpVq :“ thpV,mq | pV,mq P V ˆ Mu Ď RS , (20)

where V Ď RS is a subset of the value vector space.

We denote the set-based value operator induced by
the Bellman operator (10) and policy evaluation oper-
ators (8) as F and Gπ, respectively, such that for any
value vector set V Ď RS ,

F pVq :“ tfpV,C, P q | pV,C, P q P V ˆ Mu , (21)

GπpVq :“ tgπpV,C, P q | pV,C, P q P V ˆ Mu , @ π P Π.
(22)

The set-based Bellman operator F is the union over all
the optimal value vectors, where the optimal policy that
corresponds to each fpV,C, P q P F pVq varies based on
pC,P q. On the other hand,Gπ is the union over all value
vectors that results from a constant π and all possible
pC,P q P M parameters.

We can ask the following question: is there a set of value
vectors that is invariant with respect toH? Similar to the
value operators h from Definition 6, we can affirmatively
answer this question by showing that H is α-contractive
on KpRSq.

Theorem 23 If h is a value operator on RS ˆ M (6)
and M is compact, then the induced set value operator
H (20) satisfies

6



(1) For all V P KpRSq, H pVq P KpRSq;
(2) H is an α-contractive on pKpRSq, dKq (19) with a

unique fixed point set V‹ given by

HpV‹q “ V‹, V‹ P KpRSq; (23)

(3) The sequence tVkukPN where Vk`1 “ HpVkq con-
verges to V‹ for any V0 P KpRSq.

In particular, these hold for F (21) and Gπ (22), whose
fixed point sets are denoted as VB and Vπ, respectively.

F pVBq “ VB P KpRSq, GπpVπq “ Vπ P KpRSq, @π P Π.
(24)

PROOF. The first statement follows from Lemma 8,
since the image of a compact set by a continuous function
is compact [18]. Let us prove the second statement: for
some β P p0, 1q, for all, V,V 1 P KpRSq:

dKpHpVq, HpV 1qq

“max

$

’

&

’

%

sup
V PV
mPM

d
`

hpV,mq, HpV 1q
˘

, sup
V 1

PV 1

m1
PM

dphpV 1,m1q, HpVqq

,

/

.

/

-

ďβdKpV,V 1q

Take pV,mq P V ˆ M, then dphpV,mq, HpV 1qq ď

infV 1PV 1 ∥hpV,mq ´ hpV 1,mq∥ ď α infV 1PV 1 ∥V ´ V 1∥
holds from the α-contractive property of h. Finally,

sup
V PV
mPM

dphpV,mq, HpV 1qq ďα sup
V PV

inf
V 1PV 1

∥∥V ´ V 1
∥∥

8

ďαdKpV,V 1q

We use the same technique to prove that

sup
V 1

PV 1

m1
PM

dphpV 1,m1q, HpVqq ď αdKpV,V 1q.

Finally, dKpHpVq, HpV 1qq ď αdKpV,V 1q. From the
Banach fixed point theorem and the completeness of
pKpRSq, dKq [7, Thm 3.3], H has a unique fixed point
H‹ in KpRSq.

The third point is a consequence of the Banach fixed
point theorem. Finally, f and gπ are value operators (6)
on RS ˆ M, therefore this theorem’s statements ap-
ply. l

Remark 24 (Set-based value iteration) An impor-
tant consequence of Theorem 23 is the existence of the
set-based value iteration, given by

Vk`1 “ HpVkq, V0 P KpRSq. (25)

Analogous to standard value iteration, (25) is a sequence
of value vector sets in KpRSq that converges to the fixed
point set V‹ P KpRSq.

4 Properties of the fixed point set

For the MDP parameters pC,P q, the fixed point of
hp¨, C, P q is typically meaningful for the corresponding
MDP. For example, the fixed point of a policy evalua-
tion operator gπp¨, C, P q (8) is the expected cost-to-go
under policy π, and the fixed point of the Bellman op-
erator fp¨, C, P q (10) is the minimum cost-to-go when π
can be freely chosen. In this section, we derive proper-
ties of the fixed point set V of H (20) in the context of
non-stationary value iteration.

4.1 Non-stationary value iteration

Given a value operator h on RS ˆM, we consider value
iteration under a dynamic parameter uncertainty model
discussed in [15], where at every iteration, a new set of
MDP parameters mk is chosen from M as

V k`1 “ hpV k,mkq, V 0 P RS , mk P M,@k P N. (26)

In robust MDP literature [8, 15], mk is modified by an
adversarial opponent of the MDP decision maker such
that (26) converges to a worst-case value vector. We con-
sider a more general scenario in whichmk is chosen from
the closed and bounded set M without any probabilis-
tic prior. In this scenario, convergence of V k in RS will
not occur for all possible sequences of tmkukPN. How-
ever, we can show convergence results on the set domain
by leveraging our fixed point analysis of the set-based
operator H (20).

Proposition 25 Let V‹ be the fixed point set of the
set-based value operator H (20) induced by h on RS ˆ

M (6). If the non-stationary value iteration (26) satis-
fies tmkukPN Ă M, then the sequence tV kukPN defined
by (26) satisfies

(1) limkÑ`8 dpV k,V‹q “ 0,
(2) there exists a sub-sequence tV φpkqukPN that con-

verges to a point in V‹ as limkÑ8 V φpkq P V‹.

PROOF. Let tV kukPN be a sequence defined by V0 “

tV 0u and Vk`1 “ HpVkq, where H (20) is the set op-
erator induced by h on RS ˆ M. We first show state-
ment 1). From Theorem 23, limkÑ8 Vk converges to V‹

in dK. Therefore, 0 ď dpV k,V‹q “ infyPV‹

∥∥V k ´ y
∥∥

8
ď

supxPVk infyPV‹ ∥x´ y∥8 ď dHpVk,V‹q Ñ 0 as k tends
to `8.

Next, for all k P N, there exists N P N such that for all
n ě N , dpV n,V‹q ď pk ` 1q´1. We define the strictly
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increasing function ψ1 : N Ñ N, such that ψ1p0q “

0 and for all k ‰ 0, ψ1pkq :“ mintN ą ψ1pk ´ 1q :
@n ě N, dpV n,V‹q ă pk ` 1q´1u. Then, for all k P N‹,
there exists yψ1pkq P V‹ such that

∥∥V ψ1pkq ´ yψ1pkq
∥∥ ă

pk ` 1q´1. As V‹ is compact, there exists ψ2 : N Ñ N
strictly increasing such that pyψ1pψ2pkqqqk converges to
some y‹ P V‹ [18, Thm 3.6]. Finally, let ε ą 0, there
exist K1,K2 P N such that for all l ě K1, pψ2plqq´1 ă

ε{2 and for all l1 ě K2,
∥∥∥yψ1pψ2pl1qq ´ y‹

∥∥∥ ă ε{2. So,

taking k ě maxtK1,K2u, we have
∥∥V ψ1pψ2pkqq ´ y‹

∥∥ ď∥∥V ψ1pψ2pkqq ´ yψ1pψ2pkqq
∥∥ `

∥∥yψ1pψ2pkqq ´ y‹
∥∥ ď ε and

pV ψ1pψ2pkqqqk converges to y‹ P V‹.

l

In addition to containing all asymptotic behavior of
value vector trajectories under time-varying value iter-
ation, the fixed point set V also contains all fixed points
of the value operator hp¨, C, P q when pC,P q P M (6)
are fixed.

Corollary 26 Let h (6) be a value operator on RS ˆM
where M is compact. For all m P M, if V “ hpV,mq P

RS and V‹ is the fixed point set of the induced set-based
value operator H (20), V P V‹.

PROOF. We construct sequence tV ku where V k`1 “

hpV k,mq and V 0 “ V . Then V k “ V for all k P N. From
the second point of Proposition 25, V P V‹ follows. l

Going further, we can bound the transient behavior
of (26) when V 0 is an element of the fixed point set V‹.

Corollary 27 (Transient behavior) Let V‹ be the
fixed point of the set-based value operatorH (20) induced
by h on RS ˆ M. If M is compact and V 0 P V‹, then
the sequence generated by (26) satisfies tV kukPN Ď V‹.

PROOF. As a fixed point set ofH (20),V‹ (23) satisfies
V‹ “ HpV‹q, then the following is true by definition of
H: if V k P V‹, then V k`1 “ hpV k,mkq P V‹. If V 0 P V‹,
then tV kukPN Ď V‹ follows by induction. l

Remark 28 Proposition 25 and Corollary 27 bound
the asymptotic and transient behavior of the sequence
thpV k,mkqukPN generated from (26), regardless of the
convergence of the value vector sequence. This is a more
general result then the classic convergence results for
MDPs and robust MDPs.

Remark 29 Corollary 27 also implies that V‹ is in-
variant with respect to the non-stationary value itera-
tion (26), and may prove useful in the analysis and de-
sign of MDPs with known parameter uncertainties.

4.2 Bounds of the fixed point set

In Theorem 23, the compactness of M implied the com-
pactness of V‹. This relationship carries over to the
supremum and infimum elements of M and V‹—i.e., if
M satisfies Assumption 9 with respect to h, then V‹

contains its own supremum and infimum elements.

Greatest and least elements. We define the supre-
mum and infimum elements of a value vector set V P

KpRSq element-wise as follows,

V s :“ sup
V PV

Vs, V s :“ inf
V PV

Vs,@ s P rSs. (27)

Fig. 5. The greatest least bounds of three different value
function sets Vi

P R2, where p0, 0q the origin is located on
the lower left. Note that V2 and V3 contains their own great-
est and least elements, but V1 does not. In V1, the coordi-
nate-wise greatest and least elements are achieved by some
element in V1 but not at the same time.

If a set V Ď RS is compact, the projection of V on each
state s is compact. Then, the coordinate-wise supremum
and infimum values for each state s are achieved by V.
However in general, no single element of the set V may
simultaneously achieve the minimum over all states—
i.e., V pV q may not be an element of V. This is illustrated
in Figure 5.

Given h and parameter uncertainty setM, we wish to 1)
bound the supremum and infimum elements of the fixed
point set V‹ (23) and 2) derive sufficient conditions for
when they are elements of V‹. To facilitate bounding V‹,
we introduce the following bound operators.

Definition 30 (Bound Operators) The bound oper-
ators induced by the value operator h on RS ˆ M are
coordinate-wise defined at each s P rSs as

hspV q “ inf
mPM

hspV,mq, hspV q “ sup
mPM

hspV,mq. (28)

We want to bound the fixed point set V of the set-based
value operator H (20) by the bound operators h{h (28).
First we show that h{h are themselves α-contractive and
order preserving on RS .
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Fig. 6. We visualize the bound operator for HpVq for a given
value operator h on RS

ˆ M. The input set V is a singleton
tV u in R2. Here, because h1 and h2are reached for two dif-
ferent parameters m P M, the resulting hpV q lies outside of
the fixed point set.

Lemma 31 (α-Contraction) If h (6) is a value oper-
ator on RS ˆ M and M is compact, then h and h (28)
are α-contractions with fixed points X,X, respectively.

hpXq “ X, hpXq “ X, X,X P RS . (29)

PROOF. From Lemma 8, h is continuous and M
is compact, then for all X,Y P RS , there exists
m̂psq P M such that hspY q “ hspY, m̂psqq and
hspXq ď hspX, m̂psqq. We upper-bound hspXq ´ hspY q

by hspX, m̂psqq´hspY, m̂psqq, and use the α-contraction
property of h to derive

hspXq ´ hspY q ď |hspX, m̂psqq ´ hspY, m̂psqq|

ď α ∥X ´ Y ∥8 .

Since X and Y are arbitrarily ordered, we con-
clude that ∥hpXq ´ hpY q∥8 ď α ∥X ´ Y ∥8. The

proof for h follows a similar reasoning and takes
m̂psq “ supmPM hspX,mq. The existence of XpXq fol-
lows from applying Banach’s fixed point theorem. l

Lemma 32 (Order Preservation) The bound opera-
tors h and h (28) are order-preserving on RS (Defini-
tion 3).

@ U, V P RS , U ď V ñ hpUq ď hpV q, hpUq ď hpV q.

PROOF. The lemma statement follows directly from
the fact that order preservation is conserved through
composition with inf and sup. If hpU,mq ď hpV,mq, then
infmPM hpU,mq ď infmPM hpV,mq. A similar argument
follows for hp¨q “ supmPM hp¨,mq. l

We show that the fixed pointsX andX bounds the fixed
point set V‹ of the set-based value operator H (20).

Theorem 33 (Bounding fixed point sets) If h (6)
is a value operator on RS ˆ M and M is compact,

X ď V ď X, @ V P V‹, (30)

where X and X (29) are the fixed points of the bound
operators h and h (28), and V‹ is the fixed point set of
the set-based value operator H (20) induced by h (6) on
RS ˆ M.

PROOF. For V0 “ tX,Xu and Vk`1 “ HpVkq (25),
we first show

X ď V ď X, @ V P Vk, (31)

via induction. Suppose that (31) is satisfied for Vk.
The order preserving property of hp¨,mq implies
that hpX,mq ď hpV,mq ď hpX,mq holds for all
pV,mq P Vk ˆ M. We take the infimum and supremum
over hpX,mq and hpX,mq, respectively, to show that
for all pV,mq P Vk ˆ M and s P rSs,

inf
m1PM

hspX,m
1q ď hspV,mq ď sup

m1PM
hspX,m

1q.

Since X and X are the fixed points of infm1PM hsp¨,m1q

and supm1PM hsp¨,m1q for all s P rSs, respectively, we
conclude that (31) holds for Vk`1.

Next, we show that X and X bounds the fixed point set
V‹ for the h-induced operator H (20). From Lemma 44,
we know that for all V P V‹, there exists a strictly in-
creasing sequence ϕ : N ÞÑ N and corresponding value
vectors tWϕpnqu such that limnÑ8 Wϕpnq “ V and
Wϕpnq P Vϕpnq for the sequence of value vector sets gen-
erated from V0 “ tX,Xu. Since X ď Wϕpnq ď X holds
for all n, we conclude (30) holds. l

WhenAssumption 9 is satisfied, the fixed point ofH (20)
contains its own supremum and infimum.

Theorem 34 If h (6) onRSˆM satisfies Assumption 9,
then there exists m,m P M such that h and h (28) and
their fixed points X and X (29) satisfies

hpXq “ hpX,mq “ X, hpXq “ hpX,mq “ X. (32)

Additionally, X and X are the least and the greatest ele-

ments of H’s fixed point set V‹, V ‹, V
‹
(27) respectively,

and both belong to V‹ (23).

X “ V ‹, X “ V
‹
, X,X P V‹.
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PROOF. From Theorem 33, X and X are the
lower and upper bounds on the fixed point set V‹.
We show that these are the infimum and supre-
mum elements of V‹ by showing that they are also
elements of V‹. From Assumption 9, there exists
m,m P M such that hspX,mq “ minmPM hspX,mq

and hspX,mq “ minmPM hspX,mq for all s P rSs. Since
X and X are fixed points of hp¨,mq and hp¨,mq, we
apply Corollary 26 to conclude that X,X P V‹. l

5 Revisiting robust MDP

We re-examine robust MDP with the set-theoretical
analysis in this section, and show that Assumption 9
generalizes the rectangularity assumption made in ro-
bust MDPs, thus enabling robust dynamic program-
ming techniques to be available to a wider class of MDP
problems and contraction operators.

Recall the optimistic value vector W o P RS and ro-
bust value vectors W r P RS of a discounted MDP
prSs, rAs, C, P, γq from [8, 15] as the fixed points of the
following operators.

W o
s “ min

πsP∆A

min
pC,P qPM

gπs pW o, C, P q,@s P rSs (33)

W r
s “ min

πsP∆A

max
pC,P qPM

gπpW r, C, P q,@s P rSs (34)

The optimistic policy πo and robust policy πr are the
optimal policies corresponding to (33) and (34), respec-
tively.

πos P argmin
πsP∆A

min
pC,P qPM

gπs pW o, C, P q,@s P rSs (35)

πrs P argmin
πsP∆A

max
pC,P qPM

gπs pW r, C, P q,@s P rSs (36)

For readability, we denote the policy evaluation operator
under πo as go and the policy evaluation operator under
πr as gr.

WhenM is ps, aq-rectangular (16), the set of policies sat-
isfying (35) and (36) are non-empty and includes deter-
ministic policies [8, Thm 3.1]. When M is s-rectangular
and convex, the set of policies satisfying (36) is non-
empty but may be mixed [24, Thm 4]. When M is con-
vex, we show that policies (35) and (36) exist.

Proposition 35 If the MDP parameter set M is com-
pact and convex, then

(1) W o (33) and W r (34) exist and satisfy fpW rq “

W r, fpW oq “ W o, where f and f (28) are the
bound operators of the Bellman operator (10).

(2) πo (35) and πr (36) exist.

PROOF. Recall the Bellman operator f (6). When
M ˆ ∆A is compact, the formulation of the fixed point
of f (28) is equivalently given by

fpXq “ min
pC,P qPM

min
πsP∆A

gπs pX,C, P q, @s P rSs. (37)

We note that (37) is identical to the formulation of
W o (33). Therefore, W o “ X is the fixed point of f .
When M is compact, W o exists due to Lemma 31.
From (35), πos is the optimal argument of gπs pW o, C, P q,
a continuous function in πs, C, P minimized over com-
pact sets ∆A ˆ M for all s P rSs. Therefore πos exists.
Since πo “ pπo1, . . . , π

o
Sq, the optimal πo P Π exists.

For the robust scenario: when M is compact, the fixed
point of f (28),X, exists from Lemma 31 and is given by

Xs “ max
pC,P qPM

min
πsP∆A

gπs pX,C, P q, @s P rSs. (38)

The function gπs pX,C, P q is concave in pC,P q and con-
vex in π. If M is convex, then we apply the minimax
theorem [14] to switch the order of min and max in (38)
to derive

Xs “ min
πsP∆A

max
pC,P qPM

gπs pX,C, P q, @s P rSs. (39)

Equation (39) is identical to (34), thereforeW r “ X and
exists by Lemma 31. In (39), maxpC,P qPM gπs pX,C, P q

is piece-wise linear in πs and ∆A is compact for all s P

rSs, thus argminπsP∆A
maxpC,P qPM gπs pX,C, P q is non-

empty. Finally since πr “ pπr1, . . . , π
r
Sq, πr exists. l

Remark 36 Since maxpC,P qPM gπs pX,C, P q is piece-
wise linear in πs, the optimal πrs is mixed policy in
general. This is consistent with the results in [24].

Proposition 35 generalizes the results from [24] to show
that (34) exists when M is compact and convex instead
of s-rectangular and convex. From Theorem 33,W o and
W r bound of the fixed point sets of the πo and πr. They
become infimum and supremum elements when M sat-
isfies Assumption 9 with respect to go and gr. We ex-
plicitly derive this result next. First, we introduce some
notations: let Go “ Gπo , the fixed point of Go be Vo,
Gr “ Gπ

r

, and the fixed point of Gr be Vr.

Vo “ tgopV,C, P q | pC,P q P M, V P Vou, (40)

Vr “ tgrpV,C, P q | pC,P q P M, V P Vru. (41)

Additionally, the supremum elements of Vo and Vr are
V
o
and V

r
respectively and the infimum elements are

V o and V r, respectively.

V rs “ min
V PVr

Vs, V
r

s “ max
V PVr

Vs, @s P rSs. (42)

10



V os “ min
V PVo

Vs, V
o

s “ max
V PVo

Vs, @s P rSs. (43)

We compare these with the fixed point set of the Bellman
operator, VB “ tminπ g

πpV,C, P q | pC,P q P M, V P

VBu (23), denoted by V
B
and V B as

V Bs “ min
V PVB

rV ss, V
B

s “ max
V PVB

Vs, @s P rSs. (44)

Our next result proves the relationship between

V B , V o, V r, V
B
, V

o
, V

r
when f, go, and gr on RS ˆ M

satisfy Assumption 9.

Theorem 37 If f, go, gr satisfy Assumption 9 on RS ˆ

M, then the bounding elements (43) (42) (44) of the
corresponding fixed point sets VB,Vo (40) and Vr (41)
are ordered as

V B “ V o ď V r, V
B

“ V
r

ď V
o
. (45)

PROOF. Since V o is the infimum element for the fixed
point set Vo (43), we can apply Theorem 34 to derive

V o “ minpC,P qPM gopV o, C, P q. (46)

By definition of πo (35), minpC,P qPM gopV o, C, P q “

minpC,P qPM minπPΠ g
πpV o, C, P q. As the two minima

commute,

min
pC,P qPM

gopV o, C, P q “ min
pC,P qPM

min
πPΠ

gπpV o, C, P q.

(47)
Combining (46) and (47), V o is exactly the unique fixed
point of minpC,P qPM minπPΠ g

πp¨, C, P q. However, by ap-

plying Theorem 34 to f onRSˆM, V B is also the unique
fixed point of minpC,P qPM minπPΠ g

πp¨, C, P q. Therefore

V o “ V B .

From (42), V r “ minpC,P qPM grpV r, C, P q, we can min-
imize over the policy space to lower bound V r as

V r ě min
πPΠ

min
pC,P qPM

grpV r, C, P q. (48)

Since the right hand side of (48) is equivalent to
fpV rq, (48) is equivalent to V r ě fpV rq. From
Lemma 32, f is order-preserving in V , we conclude that

V o “ V ‹
ď V r.

From Theorem 34, V
r
is the fixed point of gr, such that

V
r

“ max
pC,P qPM

grpV
r
, C, P q. (49)

We apply minπ to both sides of (49) and use the def-

inition of πr to derive that V
r
is the fixed point of

minπPΠ maxpC,P qPM gπpV r, C, P q. From Assumption 9,

there exists pC,P q P M that maximizes gπpV ,C, P q, so

V
r
equivalently satisfies

V
r

“ min
πPΠ

gπpV
r
, C, P q.

From Corollary 26, this implies that V
r

P VB and there-

fore V
r

ď V
B
. Next we show V

B
ď V

r
. From The-

orem 34, V
B

is the fixed point of f , such that V
B

“

maxpC,P qPM minπ g
πpV

B
, C, P q, From the min-max in-

equality,

V
B

ď min
πPΠ

max
pC,P qPM

gπpV
B
, C, P q.

Since πr P Π,

V
B

ď max
pC,P qPM

grpV
B
, C, P q. (50)

The right-hand side of (50) is grpV
B

q (28), such that (50)

is equivalent to V
B

ď grpV
B

q. We consider the sequence

V k`1 “ grpV kq where V 1 “ V
B
. Since gr is a con-

traction, limkÑ8 V k “ V r, the fixed point of gr. From

Lemma 32, gr is order preserving. Therefore V
B

“ V 1 ď

V r.

Finally, Theorem 34 implies that V
o
is the fixed point

of go: V
o

“ maxpC,P qPM gopV
o
, C, P q. By construction,

V
o

ě minπPΠ maxpC,P qPM gπpV
o
, C, P q. From the min-

max inequality,

min
πPΠ

max
pC,P qPM

gπpV
o
, C, P q ě max

pC,P qPM
min
πPΠ

gπpV
o
, C, P q,

such that the right hand side of the inequality is equiv-
alent to fpV

o
q. Following the monotonicity properties

of the Bellman operator f [17, Thm.6.2.2], we conclude

that V
o

ě V
B
. l

Remark 38 Through our fixed-point analysis, we see
that in addition to having the best worst-case performance
among tVo,VB ,Vru, Vr also has the smallest variation
in performance for the same uncertainty set M.

Finally, we generalize the s-rectangularity condition by
showing that the optimistic and robust policies exist
when the MDP parameter setM satisfies Assumption 9.

Corollary 39 (Robust MDP under Assumption 9)
If M is compact and convex, and f, go, gr satisfy As-
sumption 9 on RS ˆ M, then W o (33) and W r (34)
are the infimum and supremum value vectors for the
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Fig. 7. Illustration of Theorem 37. The purple, green, blue
regions indicate the ranges of Vr, Vo, and VB , respectively.

policy evaluation operator under πo (35) and πr (36),
respectively.

W o
s “ inf

V PVo
rV ss,W

r
s “ sup

V PVr

rV ss, @s P rSs, (51)

where Vo (40) and Vr (41) are the fixed point sets of poli-
cies πo and πr under parameter uncertainty M, respec-
tively.

PROOF. When f satisfies Assumption 9 on RS ˆ M,

Theorem 34 shows that V B “ W o, V
B

“ W r. If f, go,
and gr also satisfies Assumption 9 on RS ˆ M, then we
apply Theorem 37 to derive W o “ V o and W r “ V

r
.

This proves the corollary statement. l

Remark 40 When Assumption 9 is not satisfied, W o

and W r still bound V o and V
r
. This result is also stated

in [24].

6 Value iteration for fixed point set computa-
tion

In the previous sections, we proved the existence of a
fixed point set for value operators with compact param-
eter uncertainty sets and re-interpreted robust control
through our techniques. Next, we derive an iterative al-
gorithm for computing the bounds of the fixed point set
V given a value operator h and parameter uncertainty
set M.

Algorithm Sketch. Based on the set-based value it-
eration (25), we iteratively find the one-step bounds of
HpVkq to converge the bounds of the fixed point set.

For any compact set V P KpRSq, the one step bounds of
HpVq are equivalent to the one-step output of the bound
operators h and h (28) applied to the extremal points of
V.

Theorem 41 (One step H bounds) Consider a set
operator H (20) and its bound operators h and h (28)
induced by h on RS ˆM (6). For a compact set V Ă RS,
HpVq is bounded by hpV q and hpV q (28) as

hpV q ď V ď hpV q, @ V P HpVq. (52)

where V and V (27) are the extremal elements of V. If h
satisfies Assumption 9 on RS ˆ M and V , V P V, then
hpV q and hpV q are the supremum and infimum elements
of HpVq, respectively— for all s P rSs, hspV q and hspV q

satisfy

hspV q “ inf
pV,mqPVˆM

hspV,mq, hspV q “ sup
pV,mqPVˆM

hspV,mq.

(53)

PROOF. For all s P rSs, hspV,mq ď hspV q for all m P

M. If h isKpV q-Lipschitz andα-contractions inM, then
h is order-preserving (Lemma 32) such that hspV q ď

hspV q for all V P V. We conclude that

hpV,mq ď hpV q, @pV,mq P V ˆ M. (54)

Since h is an upper bound, and sup is the least upper
bound, it holds that supV,mrhpV,mqss ď hpV q. We use

the definition of HpVq (20) to conclude that V ď hpV q

for all V P HpVq. The inequality hpV q ď V @V P HpVq

can be similarly proved.

If h satisfies Assumption 9 on RS ˆ M and V , V P V,
Assumption 9 states that there exists m P M such that
hpV ,mq “ hpV q. Therefore, hpV q P HpVq. Since hpV q

also lower bounds all the elements of HpVq, it is the
infimum element of HpVq. The fact that the greatest
element of HpVq is hpV q can be similarly proved. l

Based on Theorem 41, we propose the following bound
approximation algorithm of the fixed point set V‹ (23)
for a set-valued operator H (6).

Algorithm 1 Bound approximation of the fixed point
set V
Input: C, P, V 0, ϵ.
Output: V , V

1: V 0 :“ V
0
:“ V 0

2: e0 “
1´γ
γ ϵ

3: while γ
1´γ e

k ě ϵ do

4: V k`1
s “ minmPM hspV

k,mq, @s P rSs

5: V
k`1

s “ maxmPM hspV
k
,mq, @s P rSs

6: ek`1 “ max
!
∥∥∥V k`1

´ V k
∥∥∥ ,∥∥∥V k`1

´ V
k
∥∥∥)

7: k “ k ` 1
8: end while

6.1 Computing one-step optimal parameters

Algorithm 1 is stated for a general MDP parameter set
M and does not specify how to compute lines 4 and 5.
Here we discuss solution methods for different shapes of
M.
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(1) FiniteM. IfM “ tm1, . . . ,mNu is a set with finite
number of elements, we can directly compute line 4
as

V k`1
“ min

!

hspV
k,miq | i “ t1, . . . , Nu

)

. (55)

For line 5, we replace min with max in (55).
(2) ConvexM. WhenM is a convex set, the computa-

tion depends on h. If h “ gπ is the policy operator,
lines 4 and 5 can be solved as convex optimization
problems. If h is the Bellman operator f , lines 4
and 5 take on min-max formulation and is NP-hard
to solve in the general form [24]. When M can be
characterized by an ellipsoidal set of parameters,
the solutions to lines 4 and 5 is given in [24].

We recall the stochastic path planning problem from Ex-
ample 17 with the two different parameter uncertainty
scenarios. When the wind field uncertainty is discrete,
M is finite, when wind field is a combination of the ma-
jor wind trends, M is convex.

6.2 Algorithm Convergence Rate

When lines 4 and 5 are solvable, Algorithm 1 asymptot-
ically converges to approximations of the bounding ele-
ments of V‹. If M satisfies Assumption 9 with respect
to h, Algorithm 1 derives the exact bounds of V. Al-
gorithm 1 has similar rates of convergence in Hausdorff
distance as standard value iteration using h on RS .

Theorem 42 Consider the value operator h, compact
uncertainty set M, and the fixed point set V‹ of the set-
based operator H (20) induced by h on RS ˆ M. If M
satisfies Assumption 9 with respect to h, then at each
iteration k,∥∥∥V k`1

´ V ‹
∥∥∥ ď α

∥∥∥V k ´ V ‹
∥∥∥ ,∥∥∥V k`1

´ V
∥∥∥ ď α

∥∥∥V k ´ V
‹
∥∥∥ ,

(56)

where all norms are infinity norms, and V ‹, V
‹
are the

infimum and supremum bounds of V, respectively. At Al-
gorithm 1’s termination, V k, V

k
satisfies

maxt

∥∥∥V k ´ V ‹
∥∥∥ ,∥∥∥V k ´ V

‹
∥∥∥u ă ϵ. (57)

PROOF. From Algorithm 1, V
k`1

“ hpV
k
q. From

Lemma 31, h is anα-contraction.We obtain
∥∥∥V k`1

´ V
‹
∥∥∥ ď

α
∥∥∥V k ´ V

‹
∥∥∥ and note that (56) holds by induction.

Next, we apply triangle inequality to
∥∥∥V k ´ V

‹
∥∥∥ to

derive∥∥∥V k ´ V
‹
∥∥∥ ď

∥∥∥V k ´ V
k`1

∥∥∥ `

∥∥∥V k`1
´ V

‹
∥∥∥ . (58)

We can then use
∥∥∥V k`1

´ V
‹
∥∥∥ ď α

∥∥∥V k ´ V
‹
∥∥∥ to

bound (58) as
∥∥∥V k ´ V

‹
∥∥∥ ď 1

1´α

∥∥∥V k ´ V
k`1

∥∥∥.
A similar argument can show that

∥∥∥V k ´ V ‹
∥∥∥ ď

1
1´α

∥∥∥V k ´ V k`1
∥∥∥. When Algorithm 1’s while condition

is satisfied, max
!
∥∥∥V k ´ V

‹
∥∥∥ ,∥∥∥V k ´ V ‹

∥∥∥)

ď ϵ. This

concludes our proof. l

In particular, the Bellman operator f and policy opera-
tor gπ are γ-contractive on RS , where γ is the discount
factor, therefore Theorem 41 applies with α “ γ.

Remark 43 Theorem 42 implies that at the termina-
tion of Algorithm 1, the fixed point set V‹ can be over-
approximated by

V‹ Ď Vapprox :“
ź

sPrSs

rV k`1
s ´ ϵ, V

k`1

s ` ϵs,

where k is the last iterate before Algorithm 1 terminates.

7 Path Planning in Time-varying Wind Fields

We apply set-based value iteration to wind-assisted
probabilistic path planning of a balloon in strong, uncer-
tain wind fields [25]. MDP as a model for wind-assisted
path planning of balloons in the stratosphere and ex-
oplanets has recently gained traction [2, 25]. Discrete
state-action MDPs have been shown to be a viable high-
level path planning model [25] for such applications.

Mission Objective. In the two dimensional wind-field,
we assume that the wind-assisted balloon is tasked with
reaching target state p8, 8q in Figure 8 using minimum
fuel.

Uncertain Wind Fields. By collecting a set of wind
data on the environment’s wind field, an MDP can be
created and a policy that handles stochastic planning
can be deployed. However, wind can be a time-varying
factor that causes the expected optimal policy to have
worse-than-expected worst-case performance. We built
an ideal uncertain wind field to demonstrate how the set
Bellman operator can be used to predict the best and
worst-case behavior of a robust policy.

MDP Modeling Assumptions. Following the frame-
work described in [25], we model the path planning prob-
lem in an uncertain wind field as an infinite horizon,
discounted MDP with discrete state-actions in a two-
dimensional space. While balloons typically traverse in
three dimensions, we assume that the wind is consistent
in the vertical direction and that the final target is any
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vertical position along the given two-dimensional coor-
dinates. As a result, we can disregard the vertical posi-
tion during planning.

(a) Wind field traversed
by the balloon,

discretized into 81
states.

(b) At each state, 9
actions corresponding
to different thrust

vectors are available.

Fig. 8.

States. A total of 81 states represent the two-
dimensional space, composed of three different regions
characterized by their wind variability as shown in
Figure 8.

(1) Calmwind. In calm states Scalm, the wind magni-
tude varies uniformly between r0, 0.5s, and the wind
direction is uniformly sampled between r0, 2πs.
Scalm “ tpi, jq | p0, 0q ď pi, jq ď p2, 8q, p6, 0q ď

pi, jq ď p8, 8qu.
(2) Gusty wind. In states with gusts Sgusty, wind

magnitude is consistently 1, while the wind direc-
tion is uniformly sampled between r0, 2πs. Sgusty “

tpi, jq | p3, 3q ď pi, jq ă p6, 6qu.
(3) Unreliablewind. In unreliable states Sunreliable, a

predictable wind front occasionally moves across an
otherwise windless region. In other words, the wind
magnitude is either 0 or 1 and the wind direction
varies uniformly between rπ{4, π{2s.

Actions. The balloon is equipped with an actuator that
provides a constant thrust of 1 in 8 discretized direc-
tions shown in Figure 8b. The the only stationary ac-
tion vector with zero magnitude is highlighted in blue in
the center of Figure 8b. We assume that the actuation
force is enough to move the balloon across one state in
wind with magnitude ď 0.5, and is otherwise not strong
enough to overcome wind effects.

Transition Probabilities. The transition probabilities
in Scalm and Sgusty are certain. At each state s, we con-
sider the following neighboring states.

(1) N psq: all 8 neighboring states of state s.
(2) N ps, a, 0q: the neighboring state of s in the direction

of a.
(3) N ps, a, 1q: the neighboring state of s in the direc-

tion of a plus the two adjacent states as shown in
Figure 9a.

(a) State
transition in
calm wind.

(b) State
transition in

unreliable wind.

(c) State
transition in
gusty wind.

Fig. 9. Transition probabilities for the three different wind
regions.

(4) N ps, a, 2q: the up and upper-right neighbors of s,
as shown in Figure 9b.

In the calm wind region, the transition probabilities are
given by

Psa,s1 “

#

1
N ps,a,1q

, s1 P N ps, a, 1q

0 otherwise
, @ s P rScalms.

(59)
In the gusty wind region, the transition probabilities are
given by

Psa,s1 “

#

1
N psq

, s1 P N psq

0 otherwise
, @ s P rSgustys, @ a P rAs.

(60)
In the unreliable wind region, the transition probabilities
vary between transition dynamics P 1

s and P 2
s .

P 1
sa,s1 “

"

1, s1 P N ps, a, 0q

0 otherwise
, @ s P rSgustys, @ a P rAs.

(61)

P 2
sa,s1 “

"

0.5, s1 P N ps, a, 2q

0 otherwise
, @ s P rSgustys, @ a P rAs.

(62)
Collectively, P 1

s and P 2
s collectively form the uncertainty

set Ps Ă ∆A
S defined at each state.

Ps “ tP isa | i P t1, 2u, a P rAsu, @s P rSunreliables. (63)

Cost. We define the following state-action cost to
achieve the mission objective: at each state-action, the
cost is the sum of the current distance from target posi-
tion starg “ p8, 8q, as well as the fuel expended by given
action.

Cppi, jq, aq “

b

pi´ stargr0sq2 ` pj ´ stargr1sq2` 1
2 ∥a∥2 .

We take a “ 1 for all actions except for the staying still
action, where a “ 0.
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7.1 Bellman, optimistic policy, and robust policy

We first compute the optimistic and robust bounds of
the MDP with parameter uncertainty in P when s P

rSunreliables by running Algorithm 1. The results are
shown in Figure 10.

(a) Optimistic case with
expected objective of 54.2

(b) Robust case with
expected objective of 96.7.

Fig. 10.

We denote the optimistic policy as πo and the robust
policy as πr, and derive the bounds of their respective
value vector sets Vo (40) and Vr (41) using Algorithm 1.
The output is compared against the bounds of the set-
based Bellman operator’s fixed point set V‹ in Table 1.

Set Maximum value Minimum value

V‹ 70.61 62.25

Vo 101.58 62.25

Vr 70.63 70.52

Table 1
Bellman, optimistic policy, robust policy value bounds of the
uncertain wind field.

Time-varying wind field Next, we consider a time-
varying wind field: at each time step k, the transition
probability P k is chosen at random from P (63). In this
time-varying wind field, we compare three different pol-
icy deployments: 1) stationary optimistic policy πo as
policy operator go (40), 2) stationary robust policy πr

as policy operator gr (41), and 3) dynamically changing
policy that is optimal for the MDP prSs, rAs, P k, C, γq

as f (10). These three different policy deployments are
given by

V k`1 “ gopV k, C, P kq, (64)

V k`1 “ grpV k, C, P kq, (65)

V k`1 “ fpV k, C, P kq. (66)

The resulting cost-to-go at state sorig “ r0, 0s is plot-
ted in Figure 11. Here, we see that the optimistic pol-
icy deployment (64) has the greatest variation in value
over the course of 50 MDP time steps. Both the robust
policy deployment (65) and the dynamically changing
policy deployment (66) achieve better upper-bound at

each MDP iteration. The dynamically changing policy
deployment (66) achieves less than 70 in cost-to-go on
average, which is the best among all three deployments.
As we discussed in Remark 38, the robust policy deploy-
ment has the smallest variance in value in the presence
of wind uncertainty, achieving a value difference of less
than 0.1.

Sampled solutions. We can compute a sampled MDP
model based on 50 samples of wind vectors for each state.
Based on these samples, we add the action vector and
compute the statistical distribution of state transitions.
We then compute the value of these stationary sampled
MDPs, and compare 9 randomly selected states’ values.
The resulting scatter plot is shown in Figure 12.

8 Conclusion

In this paper, we categorized a class of operators uti-
lized to solve Markov decision processes as value oper-
ators and lifted their input space from vectors to com-
pact sets of vectors. We showed using fixed point analy-
sis that the set extensions of value operators have fixed
point sets which remain invariant given a compact set of
MDP parameter uncertainties. These sets were applied
to robust dynamic programming to further enrich exist-
ing results and generalize the k-rectangularity assump-
tion for robust MDPs. Finally, we applied our results to
a path planning problem for time-varying wind fields.
For future work, we plan on applying set-based value
operators to stochastic games in the presence of unco-
ordinated players such as humans, as well as applying
value operators to reinforcement learning to synthesize
robust learning algorithms.
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Lemma 44 Let tVnu Ď KpRSq be a converging sequence
for dK with Vn Ñ V as n Ñ 8. For all V P V, there
exists a converging subsequence tV φpnqunPN whose limit
is V for ∥¨∥.

PROOF. Let V P V. We can define the strictly in-
creasing function φ on N as follows: φp0q :“ 0 and
for all n P N, φpn ` 1q :“ mintj ą φpnq | DV j P

Vj ,
∥∥V ´ V j

∥∥ “ dpV,Vjq ď pn ` 1q´1u. Finally, as for

all n P N˚,
∥∥V ´ V φpnq

∥∥ ď pφpnq ` 1q´1, the result
holds. l
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