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Abstract— Motivated by how forecast errors exacerbate order
fluctuations in supply chains, we leverage robust feedback
controller synthesis to characterize, compute, and minimize
the worst-case order fluctuation experienced by an individual
supply chain vendor. Assuming bounded forecast errors and
demand fluctuations, we model forecast error and demand
fluctuations as inputs to linear inventory dynamics, and use the
ℓ∞ gain to define a transient Bullwhip measure. In contrast to
the existing Bullwhip measure, the transient Bullwhip measure
explicitly depends on the forecast error. This enables us to
separately quantify the transient Bullwhip measure’s sensitivity
to forecast error and demand fluctuations. To compute the con-
troller that minimizes the worst-case peak gain, we formulate
an optimization problem with bilinear matrix inequalities and
show that it is equivalent to minimizing a quasi-convex function
on a bounded domain. We simulate our model for vendors with
non-zero perishable rates and order backlogging rates, and
prove that the transient Bullwhip measure can be bounded by
a monotonic quasi-convex function whose dependency on the
product backlog rate and perishing rate is verified in simulation.

I. INTRODUCTION

As modern supply chains become more interconnected
both geographically and between different commodities, an
individual disruption’s impact on the global supply chain
has compounded [1]. Individual supply chain components
are connected to a greater number of disruptions worldwide,
such that individual disruptions have greater capacity to
cause global supply chain failures [2], [3].

The amplification of demand fluctuations within a supply
chain is termed the Bullwhip effect [4]. Both behavioral
and mathematical analyses point to demand forecast errors
as one of the Bullwhip effect’s major instigator [5], [6].
As predictors of future demand, forecasts are unavoidably
inaccurate. Their errors induce 1) conservative ordering [7],
when suppliers over-react to demand forecasts by overstock-
ing on supplies; 2) virtual inflation [8], when consumers
suspect potential supply shortages and inflate the demand;
and 3) information withholding [9], when competing vendors
withhold accurate demand signals from their suppliers in
order to retain greater market power.

Despite their role in instigating the Bullwhip effect, fore-
casts are irreplaceable in supply chain management. Previous
work used robust control theory and feedback-based con-
trollers to minimize its effects [10], [11], yet most of the
existing supply chain analysis under the robust control frame-
work assumes specific forecast tools and therefore cannot
generalize to alternative forecasting techniques. Presently, we
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address the following question: is it possible to model the
forecast-driven inventory dynamics as a state-based linear
system, and apply robust control techniques to mitigate its
transient demand amplification?

We specifically focus on the transient demand amplifica-
tion as opposed to the asymptotic total demand amplification
that is used as the standard proxy for the Bullwhip effect in
supply chain literature [11], [12]. Historically, most supply
and demand trends stabilize in the long term, but the transient
fluctuations will still lead to supply chain loss. For example,
chicken wings were at first overstocked and then under-
supplied at the beginning and middle of the COVID-19
pandemic, respectively [13]. While the chicken wing supply
chain has restabilized, these fluctuations led to significant and
irreversible food wastage. Transient Bullwhip effects have be
studied in the frequent domain [8], [14] but not in the discrete
state space setting we consider in this manuscript.

Contributions. Building on an existing state-space,
discrete-time LTI model [12] of a single commodity vendor
with non-zero order backlog rates, we incorporate imperfect
demand forecast both as a disturbance-driven variable and
a feedforward term to augment the state-based feedback
control. From this model, we define the transient Bullwhip
measure as the worst-case peak gain from forecast errors
and demand fluctuations to order fluctuations. We show that
the bilinear matrix inequality that bounds the peak gain of
a given forecast-driven feedback controller can be reduced
to a linear matrix inequality. Furthermore, we show that
the transient Bullwhip measure depends nonlinearly on the
worst-case magnitudes of the forecasting errors and the
demand fluctuations, and empirically compare the impact
of different backlog and commodity perishing rates on the
transient Bullwhip measure.

Although we formulate and compute the transient Bull-
whip measure for a single vendor, our results can extend
to the multi-vendor setting. Mitigating the Bullwhip effect
in the multi-vendor setting is more challenging due to the
Bullwhip effect’s dependence on the supply chain’s interac-
tion and communication structure [10], [11], [15].

II. SUPPLY CHAIN INVENTORY MODEL

We model a single-product supply chain vendor facing
a supply-agnostic market and orders and resupplies at fixed
time intervals as discrete-time dynamics [11], [12], [16] with
the following non-negative (R+) variables.

1) Order/resupply time interval ∆t ∈ R+: a fixed time
interval for ordering and receiving, indexed by k ∈ N,
such that tk = k∆t.

2) Inventory i(k) ∈ R+: the inventory held at time tk.
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3) Pipeline p(k) ∈ R+: the unfulfilled orders at time tk.
4) Demand d(k) ∈ R+: the demand realized at time tk.
5) Forecast f(k) ∈ R+: the forecast made at time tk for

the predicted demand at tk+2.
6) Previous forecast f̂(k) ∈ R+: the forecast made at tk−1

for the demand at tk+1.
7) Order o(k) ∈ R+: the order placed at time tk.
8) Perish rate β ∈ [0, 1]: the percentage of the stocked

inventory that expires during each time interval.
9) Backlog rate α ∈ [0, 1]: the percentage of unfulfilled

order at every resupply time interval ∆t.
Inventory dynamics. During the interval [tk−1, tk], the ven-
dor sells d(k) amount of inventory, receives (1−α)p(k−1)
amount of supplied inventory from its pipeline, and retains
(1 − β)i(k − 1) amount of previous inventory. We do not
model the shelf life and the time spent in pipeline of
individual products. Mathematically, this implies that the
pipeline p(k) and the inventory i(k) are memory-less: at time
tk, (1−α) of the pipeline p(k−1) transfers from the pipeline
to the inventory, α of the pipeline p(k − 1) remains to be
fulfilled, and o(k − 1) amount of order is added to p(k).
Forecast-driven affine control. We assume that the vendor
can access a forecast oracle f(k) that predicts the demand
at time tk+2. Given the current forecast f(k), the previous
time step’s forecast f̂(k), the inventory level i(k), and the
pipeline level p(k), the vendor adopts an affine control law
g to determine the current order o(k),

o(k) = g
(
f(k), f̂(k), i(k), p(k)

)
, (1)

where g is affine in all of its input variables. When f(k) is
treated as an exogenous signal, (1) is a form of disturbance-
state combined-feedback control [17]. When f(k) is com-
puted from a model of the demand dynamics, (1) is a form
of combined feedback-feedforward control [18]. In most LTI
descriptions of supply chains, the forecast is modeled as a
deterministic function of historical demand [7], [19].

Consider the historical average demand given by

d∞ = limT→∞
1
T

∑T
k=0 d(k). (2)

We consider the class of commodities for which the historical
average demand d∞ exists. Furthermore, we assume that the
transient demand d(k) is bounded in distance to d∞.

Assumption 1 (Bounded demand deviation). There exists
ϵd > 0, such that the demand d(k) satisfies |d(k)−d∞| ≤ ϵd
for all k ∈ N.

Bounded forecast error model. In supply chains, demand
forecast typically utilize temporal aggregation methods such
as ARIMA, ARMAX [20], [21] and machine learning [22].
We consider forecasting methods that have bounded errors
such as bounded confidence intervals in statistical estimates.

Assumption 2 (Bounded forecast error). There exists ϵf > 0,
such that the forecast f(k) satisfies |d(k+ 2)− f(k)| ≤ ϵf ,
for all realized demand d(k), k ∈ N.

Assumptions 1 and 2 together imply that the forecast
f(k)’s deviation from the historical average d∞ is also

bounded. Combining both assumptions, the worst-case de-
viation between |f(k)− d∞| is given by

|f(k)−d∞| ≤ |f(k)−d(k+2)|+ |d(k+2)−d∞| ≤ ϵd+ϵf .

We assume that the affine ordering scheme g (1) results in
positive orders o(k) and show next how to ensure this.

A. Steady-state: perfect forecast and stationary demand

When the forecast perfectly predicts the demand, f(k) =
d(k + 2) for all k ∈ N, and when the demand is stationary,
d(k) = d∞ for all k ∈ N. Let us take the ordering scheme
g (1) to be linear in the current inventory, current pipeline,
and historical demand,

o(k) = −γI i(k)− γP p(k) + γDf(k), (3)

When the ordering scheme is given by (3), the closed-loop
inventory dynamics are given by the following linear time
invariant system.[

i(k + 1)
p(k + 1)

]
=

[
1− β 1− α
−γI α− γP

] [
i(k)
p(k)

]
+

[
−1
γD

]
d∞. (4)

We first derive conditions on γI , γP , and γD such that the
closed-loop dynamics (4) is asymptotically stable.

Lemma 1 (Steady-state stability). The inventory dynam-
ics (4) is stable if and only if |λ+| < 1 and |λ−| < 1,
where λ± are given by

λ± = 1
2

(
(a+ b)±

√
(a− b)2 − 4γI(1− α)− 4ab

)
, (5)

where a = γP − α and b = β − 1.

The proof follows by finding for the eigenvalues of the
state matrix in (4) using the quadratic formula. In particular,
γP = 1 + α − β, γI = (1−β)2

1−α ensures that λ± = 0 and
achieves the fastest convergence in (4) towards steady-state
values. The range of γP , γI values that guarantee asymptotic
stability matches the empirically verified values from [12].

If the parameters (γ∞
I , γ∞

P , γ∞
D ) satisfy Lemma 1 under

perfect forecast and stationary demand, they result in the
equilibrium state [i∞, p∞]⊤ ∈ R2 that satisfies[

i∞

p∞

]
=

[
1− β 1− α
−γ∞

I α− γ∞
P

] [
i∞

p∞

]
+

[
−1
γ∞
D

]
d∞. (6)

In order for system (4) to be a valid description of the
supply chain system, the physical quantities i∞, p∞, and
o∞ = −γ∞

I i∞ − γ∞
P p∞ need to be strictly positive.

Assumption 3. The parameters (γ∞
I , γ∞

P , γ∞
D ) produce sta-

ble closed-loop dynamics (4) and generate strictly positive
steady-state inventory, pipeline (6), and order values (3), i.e.,[

i∞

p∞

]
=

[
β α− 1
γ∞
I 1− α+ γ∞

P

]−1 [−1
γ∞
D

]
d∞ > 0,

o∞ = −γ∞
I i∞ − γ∞

P p∞ + γ∞
D d∞ > 0. (7)
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Example 1 (Non-perishable goods). For non-perishable
inventory (β = 0) and positive historical demand (d∞ > 0),
the solution to (6) is given by

i∞ = (γ∞
D − 1− 1

1−αγ
∞
P )d∞/γ∞

I , p∞ = d∞/(1− α),

o∞ = −γ∞
I i∞ − γ∞

P p∞ + γ∞
D d∞.

The pipeline value p∞ and order value o∞ are independent
of the linear control parameters, and p∞ is strictly positive
if the backlog rate α < 1. Assuming that γ∞

I > 0, a positive
inventory i∞ > 0 requires that γ∞

D > γ∞
P /(1 − α) + 1. In

addition, if α = 0 (no backlog), then o∞ = p∞ = d∞.

B. Imperfect forecast and noisy demand

Returning to a setting in which the forecast f(k) has a
forecast error of up to ϵf (Assumption 2) for a demand d(k)
whose maximum deviation from the historical average is ϵd
(Assumption 1), we offset our inventory dynamics (4) to the
steady-state values driven by the historical average demand
d∞. Given linear control parameters γ∞

P , γ∞
I , γ∞

D that satisfy
Assumption 3, historical average demand d∞ ∈ R+, and
corresponding steady-state values i∞, p∞, o∞ ∈ R+, we
define the shifted state and control variables as[

x1(k)
x2(k)

]
=

[
i(k)
p(k)

]
−

[
i∞

p∞

]
, u(k) = o(k) − o∞.

The shifted dynamics then satisfy

x1(k + 1) = (1− β)x1(k) + (1− α)x2(k)−
(
d(k)− d∞

)
,

x2(k + 1) = αx2(k) + u(k),

x3(k + 1) = f(k − 1)− d∞,
(8)

where a third state variable x3 is introduced to allow a time
delay between the forecast f(k) and the realized demand
d(k+2). Under Assumption 2, d(k) = f(k− 2)+ ϵ1(k) for
some |ϵ1(k)| ≤ ϵf . Let w1(k) = d(k) − f(k − 2), w2(k) =
f(k) − d∞, such that w1(k) + w2(k − 2) = d(k) − d∞,
then (8) is equivalent to

x(k + 1) = Ax(k) +Bu(k) +Bw

[
w1(k)

w2(k)

]
,

A =

1− β 1− α −1

0 α 0

0 0 0

 , B =

01
0

 , Bw =

−1 0

0 0

0 1

 ,

(9)

where we utilize the following forecast-driven affine control

u(k) = o(k)− o∞ = Fxx(k) + Fww(k), (10)

for Fx ∈ R1×3, Fw =
[
0 gw

]
∈ R1×2, gw ∈ R, and o∞ =

−γ∞
I i∞ − γ∞

P p∞ + γ∞
D d∞. We note that the affine control

u(k) (10) is not equivalent to the linear control (3) with
offsets to the state variables. Instead, o(k) under u(k) (10)
is affine in the fluctuations in the inventory, pipeline, and
forecast values with fixed steady-state offset o∞, given by

o(k) = o∞ + Fxx(k) + Fww(k),

such that the control matrices Fx and Fw are unrelated to
(γI , γP , γD). Under Assumptions 1 and 2, the instantaneous
disturbance w(k) for any k belongs to the set W , given by

W =

{[
w1(k)
w2(k)

]
∈ R2 |w1(k)| ≤ ϵf , |w2(k)| ≤ ϵf + ϵd

}
.

(11)
The disturbance term w2(k) correspond to the forecast
fluctuation from the historical demand average and is realized
at time step k. The true demand d(k+2) is realized at time
step k + 2, corresponding to w1(k + 2).

We assume the following to ensure that the supply chain
variables (9) remain positive under the disturbance set W .

Assumption 4 (Sufficiently small demand variations). For a
chosen set of control parameters (γ∞

p , γ∞
I , γ∞

d ) and a given
historical demand d∞ > 0 , the disturbance set W (11)’s
bounds ϵd, ϵf satisfy d∞, i∞, p∞, o∞ ≫ ϵd + ϵf , where
i∞, p∞, o∞ are the steady-state values that result from the
control parameters (γ∞

p , γ∞
I , γ∞

d ) (6).

III. TRANSIENT BULLWHIP AS PEAK-TO-PEAK GAIN

In [11, Def.2], the Bullwhip effect is characterized by the
worst-case ratio of total order fluctuation to total demand
fluctuation over the infinite time horizon. Adapted for the
single vendor dynamics (9) and bounded demand (Assump-
tion 1), the vendor experiences the Bullwhip effect if

WE := sup
|w1(j)|≤ϵd,∀j∈N

∑∞
k=0(o(k)− o∞)2∑∞
k=0(d(k)− d∞)2

> 1. (12)

Intuitively, WE (12) minimizes the energy transfer from the
demand fluctuations d(k) − d∞ to the order fluctuations
o(k) − o∞ in their ℓ2 norm. As a metric for the Bullwhip
effect, WE fails to explicitly account for demand forecast
inaccuracy and does not capture transient order fluctua-
tions. Not explicitly accounting for forecasting error makes
sense when a specific forecasting method is used, so that
f(k) is a deterministic function of the historical demand
{d(k − i)}i∈N [19]. However, the WE will conflate the
impact of forecast inaccuracy with the impact of demand
fluctuations, and cannot generalize to alternative forecasting
methods. Furthermore, WE fails to account for transient
order fluctuations, as shown in Example 2.

Example 2. We consider two different order time series,
o1(k) and o2(k) under the same demand fluctuations d(k)−
d∞ and the same steady-state order level o∞ = d∞ as
shown in Figure 1. Comparing WE (12) for the order series

Fig. 1: Comparing the transient behavior of two ordering schemes.

o1 and o2, we observe that the first order series o1(k)
returns to the steady-state value much faster than the second
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order series o2(k), therefore WE(o1) < WE(o2). However,
maxk |o1(k) − o∞| > maxk |o2(k) − o∞|, and during the
time period highlighted in green, |o1(k) − o∞| fluctuates
significantly more than |o2(k) − o∞|. We conclude that o1
creates higher transient virtual demand than o1(k) despite
scoring lower on the metric WE (12).

As shown in Example 2, minimizing the energy-based
metric WE (12) can create higher transient order fluctuations.
This is problematic for supply chain logistics, where a
vendor’s ability to handle transient supply and demand fluc-
tuations is bound by hard constraints arising from warehouse
sizing and transportation availability. Transient order fluctu-
ations can also cause excess stock and perceived shortages
which can cascade into chain-wide disruptions [1], [13].
Instead, we propose an alternative metric that evaluates
the transient energy transfer from demand fluctuations and
forecast error to order fluctuations.

Definition 1 (Transient Bullwhip Measure). The inventory
dynamics (9) under the forecast-driven affine controller (10)
and demand and forecast fluctuations W (11) have a tran-
sient Bullwhip measure given by

WT = sup
w(k)∈W,k∈N

|o(k)− o∞|. (13)

The transient Bullwhip measure is the ℓ∞ gain [23]
of u(k) from (9). In contrast to the energy-based metric
WE (12), WT (13) bounds the worst-case transient behavior
of the vendor’s order dynamics. When applied to the two
different order schemes from Example 2, the WT of o2 will
be lower than the WT of o1, thus more accurately reflecting
the potential damage caused by order fluctuations and the
stress on the supply chain logistics.

A. Bounding the transient Bullwhip measure

In general, the transient Bullwhip measure WT (13) can
be difficult to compute. Instead, we build an upper bound for
it using inescapable ellipsoids [24].

Definition 2 (Inescapable ellipsoid). For P ∈ Rn×n, P ≻
0, the set Φ(P ) = {x ∈ Rn | x⊤Px ≤ 1} is an
inescapable ellipsoid of the dynamics (9) under the state
feedback controller Fx and the forecast-driven controller Fw

if x(k) ∈ Φ(P ) for all w(k) ∈ W when x(0) ∈ Φ(P ).

The inescapable ellipsoid is a type of a robust positively
invariant set [25], and can be used to bound the worst-case
order peak gain achieved by any disturbance w ∈ W and
initial state x(0) ∈ Φ(P ), which is given by

max
x(k)∈Φ(P ),w(k)∈W

∥Fxx(k) + Fww(k)∥∞ . (14)

All inescapable sets provide an upper bound on WT [24].
Therefore, we approximate the transient Bullwhip measure
via the tightest upper bound available using ellipsoid sets
Φ(P ), given by

WT ≤ inf
P∈Sn

++

max
x∈Φ(P ),w(k)∈W

∥Fxx(k) + Fww(k)∥∞ .

(15)

We first normalize the tightest upper bound (15) to forecast
errors and demand deviations in the disturbance set W (11).

Lemma 2. Let the scaled disturbance set (11) be defined as

Ŵ =
{

1
ϵ̂w | w ∈ W

}
, (16)

where ϵ̂ =
√
ϵ2f + (ϵd + ϵf )2. The transient Bullwhip mea-

sure (13) is upper-bounded by

WT ≤ ϵ̂ inf
P̂∈Sn

++

max
x∈Φ(P̂ ),w(k)∈Ŵ

∥Fxx(k) + Fww(k)∥∞ .

(17)

The proof is presented in Appendix A. Recall that check-
ing whether a set Φ(P ) is inescapable can be reduced to
evaluating a bilinear matrix inequality.

Theorem 1. [26, Thm. 1] Consider the linear system (9)
and the disturbance set Ŵ (16). The ellipsoid Φ(P ) is
inescapable under the controllers Fx = Y P and Fw if there
exists a scalar value λ ≥ 0 such that−Q+ λQ 0 QA⊤ + Y ⊤B⊤

0 −λI B⊤
w + F⊤

w B⊤

AQ+BY Bw +BFw −Q

 ⪯ 0, Q = P−1,

(18)
where Fw ∈ R1×2 is the forecast-driven control matrix (10).

Proof is given in App. B. Next we show that given P ,
we can compute maxx∈Φ(P ),w(k)∈Ŵ ∥Fxx(k) + Fww(k)∥∞
via a second linear matrix inequality. Whereas this matrix
inequality is typically expressed as a bilinear matrix in-
equality [24], [26], the structure of our forecast-driven affine
controller enables the bilinear term to be reduced to a linear
term, thus resulting in a linear matrix inequality.

Theorem 2. Under the state feedback controller Fx = Y P
and the forecast-driven controller 1√

σ
Fw, the ℓ∞ gain of the

order fluctuations o(k)− o∞ over the inescapable ellipsoid
Φ(P ) and disturbances Ŵ (16) is upper bounded as

max
x∈Φ(P ),w(k)∈Ŵ

∥∥∥∥Y Px(k) +
1√
σ
Fww(k)

∥∥∥∥
∞

≤ γ, (19)

if and only if there exists a symmetric positive definite matrix
P , λ ≥ 0, such that (18) holds and there exists σ, γ > 0 such
that Q 0 F⊤

x

0 (γ2 − σ)I F⊤
w

Fx Fw σI

 ≻ 0, Q = P−1. (20)

Proof is given in App C. Finding the ℓ∞ gain without
forecast-driven control involves solving a bilinear matrix
inequality [24], which the authors reduced to solving an
algebraic Riccati equation and a linear matrix inequality.
Using the forecast-driven affine control (1), we avoid solving
an algebraic Riccati equation.

IV. BULLWHIP-MINIMIZING FEEDBACK CONTROL DESIGN

From Theorems 1 and 2, we can conclude that the forecast-
driven affine controller that provides the tightest upper-bound
on the transient Bullwhip measure WT (13) via inescapable
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ellipsoids is the optimal argument to the following optimiza-
tion problem with bilinear matrix inequality constraints.

WT ≤ inf
λ,Q,σ,Y,γ,Fw

ϵ̂γ (21)

s.t.

−Q+ λQ 0 QA⊤ + Y B⊤

0 −λI B⊤
w + F̂⊤

w B⊤

AQ+BY Bw +BF̂w −Q

 ⪯ 0, (22)

Q 0 Y ⊤

0 (γ2 − σ)I F̂⊤
w

Y F̂w σI

 ≻ 0, (23)

Q ≻ 0, σ, γ > 0, F̂w =
[
0 Fw 0

]⊤
. (24)

With optimal values γ⋆ and optimal arguments
Q⋆, σ⋆, Y ⋆, F ⋆

w, the peak gain minimizing control is
given by u(k) = Y ⋆(Q⋆)−1x(k) + 1√

σ⋆F
⋆
ww2(k) and the

minimal peak gain is given by γ⋆
√

ϵ2f + (ϵf + ϵd)2.
The optimization problem (21) is non-convex due the

existence of a bilinear matrix term λQ in (22). We consider
the following function whose point-wise values are semi-
definite programs,

f(λ) = min
Q,σ,Y,γ,Fw

γ2

s.t.

−Q+ λQ 0 QA⊤ + Y B⊤

0 −λI B⊤
w + F⊤

w B⊤

AQ+BY Bw +BFw −Q

 ⪯ 0

Q 0 Y ⊤

0 (γ2 − σ)I F⊤
w

Y Fw σI

 ≻ 0, Q ≻ 0, σ, γ > 0.

(25)
This function is only well defined on the interval λ ∈ (0, 1].

Lemma 3. The function f(λ) (25) not well-defined for λ < 0
or λ > 1. On λ ∈ (0, 1], f(λ) is quasi-convex—i.e., for all
λ1, λ2 ∈ (0, 1],

f(αλ1 + (1− α)λ2) < max
{
f(λ1), f(λ2)

}
, ∀α ∈ [0, 1].

Proof is given in App. D. Given that f(λ) is quasi-
convex, we can perform a bisection search on λ ∈ (0, 1]
to find minλ f(λ). However, our simulated results in the
following section indicate that the minimum f(λ) occurs
at limλ→0 f(λ), and f(λ) is only sensitive to λ for non-
perishable commodities β ∼ 0.

V. SIMULATED CONTROLLER PERFORMANCE

We evaluate the quasi-convex objective (25) using CVXPY
for different perishing and backlogging rates on the domain
λ = [0, 1], as well as explore the peak-gain minimizing
controller’s reliance on the forecast error and its performance
under different forecasting methods.

A. Impact of backlog and perishing rates

We first let ϵ̂ = 1 (16) and evaluate the peak gain
γ =

√
f(λ) (25) for different combinations of perishable

rates β and backlog rates α over λ ∈ (0, 1). The results are
shown in Figures 2 and verify that f(λ) does indeed vary
with λ. Specifically, f(λ) appears to be a monotonic function

that strictly increases in λ for all sampled combinations of
backlog and perishing rates. Furthermore, f(λ) appears to
run into numerical computation errors when f(λ) ∼ 1e− 8.

Fig. 2: Peak gains
√

f(λ) as a function of λ for perishing rate
β = 0.5 (top) and backlogging rate α = 0.5 (bottom) and varying
backlog rates.

From Figure 2 (top), we observe that the peak gain
√
f(λ)

drops significantly around λ ≃ 0.7 for different backlog rates
α, while in Figure 2 (bottom), we observe that the same drop
in the peak gain

√
f(λ) occurs at different values of λ, such

that the drop occurs at lower λ values when β increases.
Combining these observations together, our simulations show
that the backlog rate does not significantly influence the
region of λ over which the minimum peak gain occurs, while
a lower perishing rate β causes the minimum peak gain γ⋆ to
be more sensitive λ, and that in general, evaluating

√
f(λ)

at λ values close to 0 could result in better approximations
of the minimum peak gain. Interestingly, we observe from
Figure 2 that neither the backlog nor the perishing rate affects
the minimum peak gain value minλ

√
f(λ) near λ = 0.

This simulation may imply that all different backlogging
and perishing rate combinations have forecast-driven affine
controllers that can drive their peak gains very close to zero.

B. Controller performance under different forecast oracles

Next, we evaluate the peak-minimizing controller’s per-
formance for the inventory dynamics (9) with perishing
rate β = 0.1, and backlog rate α = 0.1. We compute
f(0.01) (25), and use the resulting controllers F ⋆

x and F ⋆
w

for the forecast and demand uncertainty set W (11), with
different demand and forecast errors, ϵd = 1000 and ϵf ∈
[0, 1000], respectively. We evaluate the resulting closed-loop
dynamics for random initial conditions for 1000 time steps
and observe the maximum fluctuation in order and inventory.
The results are shown in Figures 3 and 4. We observe from
Figure 3 that the maximum order fluctuation is well within
the range predicted by the predicted transient Bullwhip value,
shown in orange. This may imply that our worse-case upper
bound is overly conservative. Furthermore, it appears that
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Fig. 3: Maximum order fluctuations over 1000 time steps under
increasing forecast error, ϵf ∈ [0, ϵd]. The order fluctuates below
0.04 and the theoretical bound γ⋆

√
ϵ2f + (ϵf + ϵd)2 monotonically

increases between 0.1− 0.2.

Fig. 4: Maximum inventory fluctuations over 1000 time steps as a
function of increasing forecast error, ϵf ∈ [0, ϵd].

the maximum empirical order fluctuation is around 0.04 for
all values of ϵf . However, we note that we are sampling
randomly and not computing the worst-case scenario.

Interestingly, while forecast error did not appear to impact
the empirical order fluctuations, it did significantly impact
the empirical inventory fluctuations (shown in Figure 4, with
the inventory fluctuations reaching 10e6 for ϵf ≃ 0.2ϵd, a
fairly accurate forecast oracle that is able to reduce the future
demand uncertainty five-fold. Finally, we note that the trend
for inventory fluctuation is not strictly monotone. At zero
forecast error, the inventory fluctuations in fact increase. We
repeatedly observed this slight increase at zero forecast error
for all repeated trials.

VI. CONCLUSION

We introduce a transient Bullwhip effects using the ℓ∞
gain for a single commodity supply chain vendor driven by
forecast uncertainty. The resulting peak gain can be upper-
bounded by a quasi-convex function defined on bounded do-
main. Future work includes extending the model to consider
multi-vendor supply chains to further understand the role of
individual forecast errors on the Bullwhip effect.
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APPENDIX

A. Proof of Lemma 2

Proof. Let x = ϵ̂x̂, w = ϵ̂ŵ. It follows that
1) x̂(k+1) = (A+BFx)x̂(k)+ (Bw +BFw)ŵ(k) if and

only if x(k+1) = (A+BFx)x(k)+(Bw+BFw)w(k);
2) w⊤w ≤ ϵ̂2 if and only if ŵ⊤ŵ ≤ 1;
3) x⊤Px ≤ 1 if and only if x̂⊤P̂ x̂ ≤ 1 where P̂ = ϵ̂2P ;
4) ∥Fxx(k) + Fww(k)∥∞ = ϵ̂ ∥Fxx̂(k) + Fwŵ(k)∥∞.

We can conclude that the set Φ(P ) is inescapable for the
disturbance set W if and only if Φ(P̂ ) is inescapable for the
disturbance set Ŵ . Furthermore,

max
x(k)∈Φ(P ),
w(k)∈W

∥Fxx(k) + Fww(k)∥∞ =

ϵ̂ max
x̂(k)∈Φ(P̂ ),

ŵ(k)∈Ŵ

∥Fxx̂(k) + Fwŵ(k)∥∞ . (26)

Then the problem of finding the minimum upper bound on
the transient Bullwhip measure WT is equivalent to (17).

B. Proof of Theorem 1

Proof. Our results follow from [26, Thm.1], where Φ(P̂ )
is shown to be inescapable for all disturbance terms w(k)
satisfying w⊤(k)w(k) ≤ 1 if and only if (18) holds. Since
Ŵ (11) satisfies w⊤(k)w(k) ≤ ϵ2f + (ϵd + ϵf )

2, Φ(P̂ ; ϵ̂2)

is inescapable. We note that w⊤(k)w(k) ≤ ϵ2f + (ϵd + ϵf )
2

can be overly conservative depending on the type forecasting
method used, but the equality case is realizable in the worst-
case scenario under Assumptions 2 and 1.

Next, let ϵ̂2P = P̂ , then x⊤P̂ x ≤ ϵ̂2 if and only
if x⊤Px ≤ 1, therefore Φ(P ; 1) = Φ(P̂ ; ϵ̂2), such that
Theorem 1 follows.

C. Proof of Theorem 2

Proof. From [24, Lem.4.3], the two norm of the order peak
under the forecast-driven affine controllers Fx = Y P, F̂w

satisfies

max
x(k)⊤Px(k)≤1,w(k)⊤w(k)≤1

∥∥∥Y Px(k) + F̂ww(k)
∥∥∥2
2
≤ γ2,

(27)
if and only if there exists 0 < σ, such that

M =

σP 0 F⊤
x

0 (γ2 − σ)I F̂⊤
w

Fx F̂w I

 ≻ 0. (28)

We substitute Fx = Y P and left and right multiply M by
S1 = diag{Q, I, I}. Since S1 ≻ 0, S1MS1 ≻ 0,

S1MS1 =

σQ 0 Y ⊤

0 (γ2 − σ)I F̂⊤
w

Y F̂w I

 ≻ 0. (29)

From Schur complement, (29) holds if and only if

S1MS1 =

[
(γ2 − σ)I F̂⊤

w

F̂w I

]
−

[
0 0

0 1
σY Q−1Y ⊤

]
≻ 0. (30)

Again, we left and right multiply S1MS1 by S2 =
diag{I,

√
σI}. Since S2 ≻ 0, S2S1MS1S2 ≻ 0.

S2S1MS1S2 =

[
(γ2 − σ)I

√
σF̂⊤

w√
σF̂w σI

]
−

[
0 0

0 Y Q−1Y ⊤

]
≻ 0.

(31)
We use Schur complement again to derive that
S2S1MS1S2 ≻ 0 if and only ifQ 0 Y ⊤

0 (γ2 − σ)I
√
σF̂⊤

w

Y
√
σF̂w σI

 ≻ 0. (32)

Let F̂w = 1√
σ
Fw and noting that Fxx(k) +

1√
σ
Fww(k)

is a real number,
∥∥∥Fxx(k) +

1√
σ
Fww(k)

∥∥∥
2

=∥∥∥Fxx(k) +
1√
σ
Fww(k)

∥∥∥
∞

.

D. Proof of Lemma 3

Proof. To see that λ > 1 and λ < 0 result in infeasible
LMIs, we first note that a necessary condition for an LMI
to be negative semi-definite is that its diagonal matrices and
principal minors must be negative semi-definite. In particular,
this implies that (λ − 1)Q ⪯ 0 and −Q ⪯ 0. When λ > 1,
Q must be 0 to satisfy both conditions. When λ < 0, the
(2, 2) element of the first LMI constraint, −λI , cannot be
negative semidefinite.

When λ ∈ (0, 1], let Fw, Y both be the 0 matrices in
their respective dimensions, we can find a set of candidates
for the positive semidefinite matrix Q to guarantee the LMI
inequality using the Schur complement(λ− 1)Q 0 QA⊤

0 −λI B⊤
w

AQ Bw −Q

 ⪯ 0 ⇔

−Q−
[
AQ Bw

] [ 1
λ−1Q

−1 0

0 − 1
λI

] [
QA⊤

B⊤
w

]
⪯ 0 ⇔

−Q− 1
λ−1AQA⊤ + 1

λBwB
⊤
w ⪯ 0. (33)

Then let Q = I + 1
λBwB

⊤
w and the resulting LMI (33)

will be satisfied. This also holds when λ = 1, where the
corresponding LMI is given by −Q + 1

λBwB
⊤
w ⪯ 0. The

result that f(λ) is quasi-convex when f(λ) is well-defined
follows from the proof of [24, Thm.3.2].
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