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a b s t r a c t

This paper analyzes finite-state Markov Decision Processes (MDPs) with nonstationary and uncertain
parameters via set-based fixed point theory. Given compact parameter ambiguity sets, we demonstrate
that a family of contraction operators, including the Bellman operator and the policy evaluation
operator, can be extended to set-based contraction operators with a unique fixed point—a compact
value function set. For non-stationary MDPs, we show that while the value function trajectory
diverges, its Hausdorff distance from this fixed point converges to zero. In parameter uncertain
MDPs, the fixed point’s extremum value functions are equivalent to the min–max value function
in robust dynamic programming under the rectangularity condition. Furthermore, we show that the
rectangularity condition is a sufficient condition for the fixed point to contain its own extremum value
functions. Finally, we derive novel guarantees for probabilistic path planning in capricious wind fields
and stratospheric station-keeping.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Markov decision process (MDP) is a versatile model for de-
ision making in stochastic environments and is widely used in
rajectory planning (Al-Sabban, Gonzalez, & Smith, 2013), robotics
Van Hoof, Hermans, Neumann, & Peters, 2015), and operations
esearch (Doshi, Goodwin, Akkiraju, & Verma, 2005). Given state–
ction costs and transition probabilities, finding an optimal policy
f the MDP is equivalent to solving for the fixed point value
unction of the corresponding Bellman operator. However, find-
ng the fixed point value function may not be straight forward
hen the MDP model does not accurately describe its opera-
ion environment. In MDP applications such as traffic light con-
rol and dexterous manipulation, the MDP model is prone to
wo sources of inaccuracy: environmental non-stationarity and
arameter uncertainty.

✩ This research is partly funded by National Science Foundation grant CMMI-
210563 and the University of Washington Aero&Astro Condit fellowship. The
material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Subhrakanti
Dey under the direction of Editor Florian Dorfler.
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Different from an MDP’s internal stochasticity, environmen-
tal non-stationarity refers to the time-varying changes in the
MDP parameters, in particular as induced by external factors or
the presence of interfering decision makers in an unpredictable
way. Standard dynamic programming under environmental non-
stationarity has no convergence guarantees and can be shown to
diverge.

Example 1 (Navigating in Non-Stationary Wind). An autonomous
aircraft navigates a non-stationary wind field to reach a non-
stationary target. The non-stationary wind field alternates be-
tween N known wind patterns over time and is predictable for
the next time step but unpredictable in the long term. This creates
environmental non-stationarity in both the aircraft’s transition
dynamics as well as the target position. Should its policy op-
timization use the average wind pattern, the worst-case wind
pattern, or the short-term wind forecast?

On the other hand, parameter uncertainty refers to the dis-
crepancy between the modeling parameters used in computation
vs. the parameters that accurately model a time-invariant sys-
tem. Minimizing the risk or worst-case failure for a parameter-
uncertain MDP can be tackled from the min–max approach via
robust MDPs (Iyengar, 2005; Mannor, Mebel, & Xu, 2016) and
distributionally robust MDPs (Yang, 2017) under rectangularity
assumptions on the parameter uncertainty’s state–action space

structure (Iyengar, 2005; Mannor et al., 2016).

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In this paper, we develop a set-theoretic extension to the Bell-
man operator that is applicable to MDPs experiencing both envi-
ronmental non-stationarity and parameter uncertainty. We use
this approach to derive convergence guarantees for environmen-
tally non-stationary MDPs under the Hausdorff distance and to
extend the rectangularity assumptions for parameter-uncertain
MDPs.

Contributions. We propose the set-extensions of value opera-
tors: a general class of contraction operators that includes the
Bellman operator and the policy evaluation operator. For these
value operators, we extend their input–output domain to sets of
value functions, show the existence of a compact fixed point and
rove that value iteration over sets of value functions converges.
nder non-stationarity assumptions, we show that the Hausdorff
istance between the value iteration trajectory and the fixed
oint of the value operator always converges to zero. Under MDP
arameter uncertainty, we show that the rectangularity assump-
ion in the min–max MDP model is sufficient for the fixed point
f the value operator to contain its own extremal value functions.
iven a value operator and a compact parameter uncertainty
et, we present an algorithm that computes the bounds of the
orresponding fixed point set. Finally, we apply our results to the
ind-assisted navigation of high altitude platform systems rele-
ant to space exploration (Wolf et al., 2010) and show that our
lgorithms can be used to derive policies with better guarantees.

elated research. MDP with parameter uncertainty is well-
tudied in robust control and reinforcement learning. In control
heory, the worst-case cost-to-go with respect to state-decoupled
arameter uncertainties is derived via a minmax variation of
he Bellman operator in Givan, Leach, and Dean (2000), Iyengar
2005), Nilim and El Ghaoui (2005) and Wiesemann, Kuhn, and
ustem (2013). The cost-to-go under parameter uncertainty with
oupling between states and time steps is similarly bounded
n Goyal and Grand-Clement (2022) and Mannor et al. (2016).
he effect of statistical uncertainty on the optimal cost-to-go is
tudied in Mannor et al. (2016), Nilim and El Ghaoui (2005),
iesemann et al. (2013) and Yang (2017). Recently, parameter-
ncertain MDPs gained traction in the reinforcement learning
ommunity due to the presence of uncertainty in real world
roblems such as traffic signal control and multi-agent coor-
ination (Kumar, Zhou, Tucker, & Levine, 2020; Lecarpentier &
achelson, 2019; Padakandla, KJ, & Bhatnagar, 2020). Most RL
esearch extends the worst-case analysis to methods such as Q-
earning and SARSA. Recently, methods for value-based RL using
on-contracting operators have been investigated in Bellemare,
strovski, Guez, Thomas, and Munos (2016).
As an alternative to optimizing for the worst-case, distri-

utionally robust MDP optimizes a risk metric over the value
unctions of an MDP whose parameters are described by a known
et of probability distributions. Distributionally robust MDPs boil
own to solving a min–max MDP formulation (Mannor et al.,
016; Xu & Mannor, 2010; Yang, 2017; Yu & Xu, 2015) over
n ambiguity set, and require a rectangularity condition to be
olvable.
We do not optimize the worst-case cost-to-go by assuming

dversarial MDP parameter selection. Instead, we derive a set of
ost-to-go values that is invariant with respect to a compact pa-
ameter uncertainty set. We continue from our previous work (Li,
djé, Garoche, & Açıkmeşe, 2021), in which we analyzed the
et-based Bellman operator for cost uncertainty only.

otation: A set of N elements is given by [N] = {0, . . . ,N − 1}.
e denote the set of matrices of i rows and j columns with real

non-negative) entries as Ri×j (Ri×j
+ ), respectively. Matrices and

ome integers are denoted by capital letters, X , while sets are
enoted by cursive typeset X . The set of all compact subsets of
2

d is denoted by K(Rd). The column vector of ones of size N ∈ N
s denoted by 1N = [1, . . . , 1]T ∈ RN×1. The identity matrix of
size S is denoted by IS . The simplex of dimension S is denoted
by

∆S = {p ∈ RS
| 1⊤

S p = 1, p ⩾ 0}. (1)

A vector h ∈ RS has equivalent notation (h1, . . . , hs), where hs is
the value of h in the sth coordinate, s ∈ [S].

2. Discounted infinite-horizon MDP

A discounted infinite-horizon finite state MDP is given by ([S],
[A], P, C, γ ), where γ ∈ (0, 1) is a discount factor, [S] = {1, . . . , S}
s a finite set of states and [A] = {1, . . . , A} is a finite set of
actions. Without loss of generality, assume that every action is
admissible from every state.

MDP Costs. C ∈ RS×A is the matrix encoding the MDP cost.
Each Csa ∈ R is the cost of taking action a ∈ [A] from state
s ∈ [S]. We also denote the cost of all actions at state s by
cs = [Cs1, . . . , CsA] ∈ RA, such that C = [c1, . . . , cS]⊤.

MDP Transition Dynamics. The transition probabilities when
action a is taken from state s are given by psa ∈ ∆S . Collectively,
all possible transition probabilities from state s ∈ [S] are given
by the matrix Ps = [ps1, . . . , psA] ∈ ∆A

S ⊂ RS×A, and all possible
transition probabilities in the MDP are given by the matrix P =

[P1, . . . , PS] ∈ ∆SA
S ⊂ RS×SA.

MDP Policy. The policy is denoted as π = [π1, . . . , πS] ∈ ∆S
A,

where the ath element of πs ∈ ∆A is the conditional probability of
action a being chosen from state s. We also use π (s) to denote the
corresponding discrete random variable with probability density
πs.

MDP Objective. Under policy π , the decision maker’s expected
cost-to-go is given per state by

Vπs := Es

{ ∞∑
t=0

γ tCstat | s0 = s, at ∼ π (st )
}
, ∀ s ∈ [S], (2)

where Es{·} is the expected value of the input with respect to
initial state s, and (st , at ) are the state and action at time t . The
decision maker’s objective is to minimize Vs for all s ∈ [S]. We
denote the minimum as V ⋆s .

V ⋆s := min
π∈∆S

A

Es

{ ∞∑
t=0

γ tCstat | s0 = s, at ∼ π (st )
}
, (3)

Under policy πs, the expected immediate cost at s is given by
c⊤
s πs ∈ R and the expected transition probabilities from s is given
by Psπs ∈ ∆S .

Remark 1. Although value function is the standard term for the
expected cost-to-go, we use value vector in this paper to em-
phasize that the cost-to-go values of finite MDPs belong in a
finite-dimensional space.

2.1. Value operators

We can find the optimal policy by finding the value vector
that minimizes the objective (3). Typical solution methods utilize
order preserving (Schröder, 2003, Def. 3.1), α-contractive oper-
ators whose fixed points are the MDP’s optimal value vectors
(e.g. Bellman operator (Puterman, 2014, Thm. 6.2.3), Q -value
operator (Melo, 2001)).
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Fig. 1. Visualization of the three value operator properties. (a) α-contraction on
S , (b) Order preservation on RS , and (c) K (V )-Lipschitz in input space M.

Definition 1 (α-Contraction). Let (X , d) be a metric space with
metric d. The operator H : X ↦→ X is an α-contraction if and
only if there exists α ∈ [0, 1) such that

d
(
H(V ),H(V ′)

)
⩽ αd(V , V ′), ∀ V , V ′

∈ X . (4)

Definition 2 (Order Preservation). Let (X ,⩽) be an ordered space
with partial order ⩽. The operator H : X ↦→ X is order preserving
if for all V , V ′

∈ X such that V ⩽ V ′, H(V ) ⩽ H(V ′).

These operators are typically locally Lipschitz in the MDP
arameter space.

efinition 3 (K (V )-Lipschitz). Let (X , dX ) be a metric space with
metric dX and (Y, dY ) be a metric space with metric dY . The
operator H : X ×Y ↦→ X is K (V )-Lipschitz with respect to M ⊂ Y
if for all V ∈ X , there exists K (V ) ∈ R+ such that

dX
(
H(V ,m),H(V ,m′)

)
⩽ K (V )dY (m,m′), ∀m,m′

∈ M. (5)

Remark 2. The α-contraction property is a special case of Lips-
chitz continuity when the input and output spaces are identical
and the Lipschitz constant is less than 1.

To capture operators with these properties, we define a value
operator that takes inputs: the value vector, the cost, and the
transition dynamics. The cost and transition dynamics are se-
lected from a parameter set M.

Definition 4 (Value Operator). Consider the operator h, given by

h : RS
× M ↦→ RS, M ⊆ RS×A

×∆SA
S . (6)

We say that h (6) is a value operator (see Fig. 1) on RS
× M if

(1) For all m ∈ M, h(·,m) is α-contractive on RS .
(2) For all m ∈ M, h(·,m) is order preserving in RS .
(3) For all V ∈ RS , h(V ,m) is K (V )-Lipschitz on M.

Remark 3. Definition 4 and the subsequent results can be ex-
tended to the space of Q -value functions by swapping RS for RSA

in Definition 4 (Melo, 2001).

An immediate consequence an operator being α-contractive
and order-preserving on RS is that it is continuous on RS

× M.

Lemma 1 (Continuity). If h (6) is a value operator on RS
× M, h is

continuous on RS
× M.

See Appendix B for proof. Examples of value operators include
the Bellman operator and the policy evaluation operators when
the cost and transition dynamics are input parameters rather than
fixed parameters.

Definition 5 (Policy Evaluation Operator). Given a policy π ∈ ∆S
A,

the vector-valued operator gπ = (gπ1 , . . . , g
π
S ) : RS

× RS×A
×

SA
S ↦→ RS is defined per state as
π (V , C, P) := c⊤π + γ (P π )⊤V , ∀s ∈ [S]. (7)
s s s s s

3

Given (C, P), gπ (·, C, P) : RS
↦→ RS is a vector-valued oper-

ator whose fixed point is the expected cost-to-go of the MDP
([S], [A], C, P, γ ) under π , denoted as Vπ (C, P) (Puterman, 2014,
Thm. 6.2.5).

Vπ (C, P) = gπ (Vπ , C, P), Vπ (C, P) ∈ RS . (8)

When the context is clear, we denote Vπ (C, P) as Vπ .

Definition 6 (Bellman Operator). The vector-valued operator f =

(f1, . . ., fS) : RS
× RS×A

×∆SA
S ↦→ RS is defined per each state as

fs(V , C, P) := inf
πs∈∆A

gπs (V , C, P), ∀ s ∈ [S]. (9)

The corresponding optimal policy π ⋆ = (π ⋆1 , . . . , π
⋆
s ) is defined

per state as π ⋆s ∈ argminπs∈∆A
gπs (V , C, P) (9). One such policy is

defined for all (s, a) ∈ [S] × [A] by

π ⋆sa :=

{
> 0 a ∈ argmin

a∈[A]

Csa + γ p⊤
saV

0 otherwise,

∑
a∈[A]

π ⋆sa = 1. (10)

where argmina∈[A](h) is the set of minimizing actions for the
function h. An optimal policy in the form (10) always exists
for a discounted infinite horizon MDP (Puterman, 2014, Thm
6.2.10). For a parameters (C, P), f (·, C, P) : RS

↦→ RS is a vector
operator whose fixed point is the optimal cost-to-go for the MDP
([S], [A], P, C, γ ), denoted as V B(C, P).

V B(C, P) = f (V B, C, P), V B(C, P) ∈ RS . (11)

When the context is clear, we denote V B(C, P) as V B.

We show that both (7) and (9) are value operators.

Lemma 2. The Bellman operator (9) and the policy evaluation
operators (7) for all π ∈ ∆S

A are value operators on RS
× M where

M ⊆ RS×A
×∆SA

S (6).

See Appendix C for proof.

Remark 4. Beyond the policy evaluation operator and the Bell-
man operator, many algorithms in reinforcement learning can
be cast as value operators. For example, the Q-learning opera-
tor (Melo, 2001) and the off-policy temporal difference opera-
tor (Chen, Maguluri, Shakkottai, & Shanmugam, 2021) are both
value operators on RSA.

3. Set-based value operators

We now define set-based value operators with respect to a
compact set of MDP parameters, beginning with Hausdorff-type
set distances.

Definition 7 (Point-to-Set Distance). The distance between a value
vector and a set V ⊆ RS is given by

W ↦→ d(W ,V) := inf
V∈V

∥W − V∥∞. (12)

On the space of compact subsets of RS , given by K(RS), the
distance between value vector sets extends (12) and is given by
the Hausdorff distance (Henrikson, 1999).

Definition 8 (Set-to-Set Distance). The Hausdorff distance be-
tween two compact value vector sets V,W ⊆ RS is given by

dK(V,W) := max
{
sup d(V ,W), sup d(W ,V)

}
. (13)
V∈V W∈W
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T
m(
Fig. 2. Visualization of the set-based operator H(V) applied to a singleton set
V = {V } ⊂ RS : H(V) = ∪m∈Mh(V ,m).

We use
(
K(RS), dK

)
to denote the metric space formed by the

set of all compact subsets of RS under the Hausdorff distance dK.
he induced Hausdorff space is complete if and only if the original
etric space is complete (Henrikson, 1999, Thm 3.3). Therefore,
K(RS), dK

)
is a complete metric space.

Given a value operator h (6), we ask: what is the set of
possible value vectors when the MDP exhibits environmental
non-stationarity captured by M? To resolve this, we define the
set-based value operator H .

Definition 9 (Set-Based Value Operator). The set-valued operator
H is induced by h on RS

× M (6) and is defined as

H(V) := {h(V ,m) | (V ,m) ∈ V × M} ⊆ RS, (14)

where V ⊆ RS is a subset of the value vector space (see Fig. 2).

We denote the set-based value operator induced by the Bell-
man operator (9) and the policy evaluation operators (7) as F and
Gπ , respectively, such that for any value vector set V ⊆ RS ,

F (V) := {f (V , C, P) | (V , C, P) ∈ V × M} , (15)

Gπ (V) := {gπ (V , C, P) | (V , C, P) ∈ V × M} ,∀ π ∈ ∆S
A. (16)

The set-based Bellman F is the union over all one-step optimal
value vectors, which may result from different policies, while Gπ
is the union over all value vectors from the same policy π .

We ask the following: is there a set of value vectors that is
invariant with respect to H? Similar to the value operators h from
Definition 4, we affirmatively answer this by demonstrating that
H is α-contractive on K(RS).

Theorem 1. If h is a value operator on RS
×M (6) andM is compact,

then the induced set value operator H (14) satisfies

(1) For all V ∈ K(RS), H (V) ∈ K(RS);
(2) H is α-contractive on

(
K(RS), dK

)
(13) with a unique fixed

point set V⋆ given by

H(V⋆) = V⋆, V⋆ ∈ K(RS); (17)

(3) The sequence {Vk
}k∈N where Vk+1

= H(Vk) converges to V⋆

for any V0
∈ K(RS).

In particular, these hold for F (15) and Gπ (16), whose fixed point
sets are denoted as VB and Vπ , respectively.

F (VB) = VB
∈ K(RS), Gπ (Vπ ) = Vπ ∈ K(RS), ∀π ∈ ∆S

A. (18)

Proof. The first statement follows from Lemma 1, since the image
of a compact set by a continuous function is compact (Rudin et al.,
1964). Let us prove the second statement: for some β ∈ (0, 1), for
4

all, V,V ′
∈ K(RS):

dK
(
H(V),H(V ′)

)
=max

⎧⎨⎩ sup
V∈V
m∈M

d
(
h(V ,m),H(V ′)

)
, sup

V ′∈V′

m′∈M

d
(
h(V ′,m′),H(V)

)⎫⎬⎭
⩽βdK(V,V ′)

Take (V ,m) ∈ V × M, then d
(
h(V ,m),H(V ′)

)
⩽ infV ′∈V ′

∥h(V ,m) − h(V ′,m)∥∞ ⩽ α infV ′∈V ′ ∥V − V ′
∥∞ holds from the

α-contractive property of h. Finally,

sup
V∈V
m∈M

d
(
h(V ,m),H(V ′)

)
⩽α sup

V∈V
inf

V ′∈V ′
∥V − V ′

∥∞

⩽αdK(V,V ′)

We use the same technique to prove that

sup
V ′∈V′

m′∈M

d
(
h(V ′,m′),H(V)

)
⩽ αdK(V,V ′). (19)

Finally, dK
(
H(V),H(V ′)

)
⩽ αdK(V,V ′). From the Banach fixed

point theorem and the completeness of
(
K(RS), dK

)
(Henrikson,

1999, Thm 3.3), H has a unique fixed point V⋆ in K(RS).
The third point is a consequence of the Banach fixed point the-

orem. Finally, (18) holds because f and gπ are value operators (6)
on RS

× M. □

Remark 5. Theorem 1’s results can be extended to continuous
state–action domains if the operator h satisfies Definition 4.

A consequence of Theorem 1 is the existence of a set-based
value iteration, given by

Vk+1
= H(Vk), V0

∈ K(RS). (20)

Analogous to the standard value iteration, (20) defines a sequence
of value vector sets in K(RS) that converges to the fixed point set
V⋆ ∈ K(RS). In the next section, we demonstrate how this set-
based approach leads to convergence results for non-stationary
value iteration.

4. Properties of the fixed point set

We analyze the properties of the fixed point set V⋆ under non-
stationary value iteration in this section and derive contraction
operators that bound V⋆.

4.1. Non-stationary value iteration

Given a value operator h on RS
×M, we consider value itera-

tion under a dynamic parameter uncertainty model, as discussed
in Nilim and El Ghaoui (2005), where at every iteration, a new set
of MDP parameters mk is chosen from M such that

V k+1
= h(V k,mk), V 0

∈ RS, mk
∈ M,∀k ∈ N. (21)

In the robust MDP approach (Iyengar, 2005; Nilim & El Ghaoui,
2005), mk is adversarially modified such that (21). We consider
a different scenario in which mk is chosen from the closed and
bounded set M. In this scenario, convergence of V k in RS will
not occur for all possible sequences of {mk

}k∈N. However, we can
show convergence results on the set domain by leveraging our
fixed point analysis of the set-based operator H (14).

Proposition 1. Let V⋆ be the fixed point set of the set-based value
operator H (14) induced by h on RS

× M (6). If the non-stationary
value iteration (21) satisfies {mk

}k∈N ⊂ M, then the sequence
k

{V }k∈N defined by (21) satisfies
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(1) limk→+∞ d(V k,V⋆) = 0,
(2) there exists a sub-sequence {V ϕ(k)}k∈N that converges to a

point in V⋆ as limk→∞ V ϕ(k) ∈ V⋆.

roof. Let {Vk
}k∈N be a set sequence defined by V0

= {V 0
} and

k+1
= H(Vk), where H (14) is the set operator induced by

on RS
× M. We first show statement (1). From Theorem 1,

imk→∞ Vk converges to V⋆ in dK. Therefore, 0 ⩽ d(V k,V⋆) =

nfy∈V⋆ ∥V k
− y∥∞ ⩽ supx∈Vk infy∈V⋆ ∥x − y∥∞ ⩽ dK(Vk,V⋆) → 0

s k tends to +∞.
Next, for all k ∈ N, there exists N ∈ N such that for all
⩾ N , d(V n,V⋆) ⩽ (k + 1)−1. We define the strictly increasing

unction ψ1 : N → N, such that ψ1(0) = 0 and for all k ̸= 0,
1(k) := min{N > ψ1(k − 1) : ∀n ⩾ N, d(V n,V⋆) < (k + 1)−1

}.
hen, for all k ∈ {1, 2, . . .}, there exists yψ1(k) ∈ V⋆ such that
Vψ1(k) − yψ1(k)∥∞ < (k + 1)−1. As V⋆ is compact, there exists
2 : N → N strictly increasing such that (yψ1(ψ2(k)))k converges to
ome y⋆ ∈ V⋆ (Rudin et al., 1964, Thm 3.6). Finally, let ε > 0, there
xist K1, K2 ∈ N such that for all l ⩾ K1, (ψ2(l))−1 < ε/2 and for all
′ ⩾ K2, ∥yψ1(ψ2(l′)) − y⋆∥∞ < ε/2. So, taking k ⩾ max{K1, K2}, we
ave ∥Vψ1(ψ2(k)) − y⋆∥∞ ⩽ ∥Vψ1(ψ2(k)) − yψ1(ψ2(k))∥∞ +∥yψ1(ψ2(k)) −
⋆
∥∞ ⩽ ε and (Vψ1(ψ2(k)))k converges to y⋆ ∈ V⋆. □

Beyond bounding the asymptotic behavior of value vector
rajectories under non-stationary parameters, the fixed point set
also contains all fixed points of the value operator h(·,m) when
∈ M (6) is fixed.

orollary 1. Let h (6) be a value operator on RS
× M where M is

ompact. For all m ∈ M, if V = h(V ,m) ∈ RS and V⋆ is the fixed
oint set of the induced set-based value operator H (14), V ∈ V⋆.

roof. We construct sequence {V k
} where V k+1

= h(V k,m) and
0

= V . Then V k
= V for all k ∈ N. From the second point of

roposition 1, V ∈ V⋆ follows. □

Furthermore, we can bound the transient behavior of (21)
hen V 0 is an element of the fixed point set V⋆.

orollary 2 (Transient Behavior). Let V⋆ be the fixed point of the
et-based value operator H (14) induced by h on RS

× M. If M is
ompact and V 0

∈ V⋆, then the sequence generated by (21) satisfies
V k

}k∈N ⊆ V⋆.

roof. As the fixed point of H (14), V⋆ (17) satisfies V⋆ = H(V⋆),
hen the following is true by definition of H: if V k

∈ V⋆, then
k+1

= h(V k,mk) ∈ V⋆. If V 0
∈ V⋆, then {V k

}k∈N ⊆ V⋆ follows by
nduction. □

Proposition 1 and Corollary 2 bound the asymptotic and tran-
ient behavior of the sequence {h(V k,mk)}k∈N from (21), irrespec-
ive of the convergence of the value vector sequence. This is a
ore general result than the classic convergence results for MDPs
nd robust MDPs.

.2. Bounds of the fixed point set

Since V⋆ is compact, it must have finite supremum and infi-
um value vectors. We show that it is possible to define contrac-

ion operators whose fixed points correspond to these extremal
lements.

reatest and least elements. We define the supremum and infi-
um elements of a value vector set V ∈ K(RS) element-wise as

ollows,

V s := sup
V∈V

Vs, V s := inf
V∈V

Vs,∀ s ∈ [S]. (22)
5

Fig. 3. The greatest least bounds of three different value function sets V i
∈ R2 ,

here (0, 0) the origin is located on the lower left. Sets V2 and V3 contain their
own greatest and least elements, but V1 does not.

Fig. 4. We visualize h/h for H(V) on RS
×M. The input V = {V } ∈ R2 . Because

h1 and h2 are achieved for two different m ∈ M, the resulting h(V ) lies outside
of H(V).

If a set V ⊆ RS is compact, the coordinate-wise supremum and
infimum values are achieved by elements of V . However, it is not
obvious that a single element in V can achieve the minimum over
all states—i.e., V (V ) may not be an element of V . This is illustrated
in Fig. 3. We introduce the following bound operators (see Fig. 4).

Definition 10 (Bound Operators). The bound operators induced by
the value operator h on RS

× M are coordinate-wise defined at
each s ∈ [S] as

hs(V ) = inf
m∈M

hs(V ,m), hs(V ) = sup
m∈M

hs(V ,m). (23)

Our goal is to bound the fixed point set V of the set-based
alue operator H (14) using the bound operators h/h (23). First

we show that h/h are α-contractive and order preserving on RS .

emma 3 (α-Contraction). If h (6) is a value operator on RS
× M

nd M is compact, then h and h (23) are α-contractions with fixed
points X, X, respectively.

h(X) = X, h(X) = X, X, X ∈ RS . (24)

Proof. From Lemma 1, h is continuous and M is compact, then for
all X, Y ∈ RS , there exists m̂(s) ∈ M such that hs(Y ) = hs

(
Y , m̂(s)

)
and hs(X) ⩽ hs

(
X, m̂(s)

)
. We upper-bound hs(X) − hs(Y ) by

hs
(
X, m̂(s)

)
− hs

(
Y , m̂(s)

)
, and use the α-contraction property of

h to derive

hs(X) − hs(Y ) ⩽ |hs
(
X, m̂(s)

)
− hs

(
Y , m̂(s)

)
|

⩽ α∥X − Y∥∞.

ince X and Y are arbitrarily ordered, we conclude that ∥h(X) −

(Y )∥∞ ⩽ α∥X −Y∥∞. The proof for h follows a similar reasoning
and takes m̂(s) = argmaxm∈Mhs(X,m). The existence of X(X)
ollows from applying Banach’s fixed point theorem. □

emma 4 (Order Preservation). The bound operators h and h (23)
are order-preserving on RS (Definition 2), i.e.,

∀ U, V ∈ RS, U ⩽ V ⇒ h(U) ⩽ h(V ), h(U) ⩽ h(V ).

Proof. The lemma statement follows directly from the fact that
order preservation is conserved through composition with inf and



S.H.Q. Li, A. Adjé, P.-L. Garoche et al. Automatica 171 (2025) 111970

s
A

w

P

v
p

S

T

m

s
o
c
a
m
r

5

v
e
i
f

t
p

A
t
h

up. If h(U,m) ⩽ h(V ,m), then infm∈M h(U,m) ⩽ infm∈M h(V ,m).
similar argument follows for h(·) = supm∈M h(·,m). □

We show that the fixed points X and X bound the fixed point
set V⋆ of the set-based value operator H (14).

Theorem 2 (Bounding Fixed Point Sets). If h (6) is a value operator
on RS

× M and M is compact,

X ⩽ V ⩽ X, ∀ V ∈ V⋆, (25)

here X and X (24) are the fixed points of the bound operators h and
h (23). Here, V⋆ is the fixed point set of the set-based value operator
H (14) induced by h (6) on RS

× M.

roof. For V0
= {X, X} and Vk+1

= H(Vk) (20), we first show

X ⩽ V ⩽ X, ∀ V ∈ Vk, (26)

ia induction. Suppose that (26) is satisfied for Vk. The order
reserving property of h(·,m) implies that h(X,m) ⩽ h(V ,m) ⩽

h(X,m) holds for all (V ,m) ∈ Vk
× M. We take the infimum and

supremum over h(X,m) and h(X,m), respectively, to show that
for all (V ,m) ∈ Vk

× M and s ∈ [S],

inf
m′∈M

hs(X,m′) ⩽ hs(V ,m) ⩽ sup
m′∈M

hs(X,m′).

ince X and X are the fixed points of infm′∈M hs(·,m′) and
supm′∈M hs(·,m′) for all s ∈ [S], respectively, we conclude that
(26) holds for Vk+1.

Next, we show that X and X bound the fixed point set V⋆

for the h-induced operator H (14). From Lemma 5, we know
that for all V ∈ V⋆, there exists a strictly increasing sequence
φ : N ↦→ N and corresponding value vectors {Wφ(n)

} such that
limn→∞ Wφ(n)

= V and Wφ(n)
∈ Vφ(n) for the sequence of value

vector sets generated from V0
= {X, X}. Since X ⩽ Wφ(n) ⩽ X

holds for all n, we conclude (25) holds. □

5. Revisiting min–max MDP

The extremum of the set-based Bellman operator’s fixed point
set is equivalent to the min–max value vector under the rectan-
gularity condition, though it exists under fewer restrictions. We
formally prove this relationship by re-examining robust MDPs
using a set-theoretic approach. Recall the optimistic value vector
W o

∈ RS and robust value vector W r
∈ RS of a discounted MDP

([S], [A], C, P, γ ) from Iyengar (2005) and Nilim and El Ghaoui
(2005) as the fixed points of the following operators.

W o
s = min

πs∈∆A
min

(C,P)∈M
gπs (W

o, C, P), ∀s ∈ [S], (27)

W r
s = min

πs∈∆A
max

(C,P)∈M
gπs (W

r , C, P),∀s ∈ [S]. (28)

The optimistic policy π o and robust policy π r are the optimal
policies corresponding to (27) and (28), respectively.

π o
s ∈ argmin

πs∈∆A

min
(C,P)∈M

gπs (W
o, C, P),∀s ∈ [S] (29)

π r
s ∈ argmin

πs∈∆A

max
(C,P)∈M

gπs (W
r , C, P),∀s ∈ [S] (30)

For clarity, we denote the policy evaluation operator (7) under π o

as go and the policy evaluation operator (7) under π r as g r .
When M is (s, a)-rectangular (35), the set of policies sat-

isfying (29) and (30) is non-empty and includes deterministic
policies (Iyengar, 2005, Thm 3.1). When M is s-rectangular and
convex, the set of policies satisfying (30) is non-empty but may
be mixed (Wiesemann et al., 2013, Thm 4). When M is convex,
we show that policies (29) and (30) exist.
6

Proposition 2. If the MDP parameter set M is compact and convex,
then

(1) W o (27) and W r (28) exist and satisfy f (W r ) = W r , f (W o)
= W o, where f and f (23) are the bound operators of the
Bellman operator (9).

(2) π o (29) and π r (30) exist.

Proof. Recall the Bellman operator f (9). When M ×∆A is com-
pact, the formulation of the fixed point of f (23) is equivalently
given by

f
s
(X) = min

(C,P)∈M
min
πs∈∆A

gπs (X, C, P), ∀s ∈ [S]. (31)

We note that (31) is identical to the formulation of W o (27).
herefore, W o

= X is the fixed point of f . When M is compact,
W o exists due to Lemma 3. From (29), π o

s is the optimal argument
of gπs (W

o, C, P), a continuous function in πs, C, P minimized over
compact sets ∆A × M for all s ∈ [S]. Therefore π o

s exists. Since
π o

= (π o
1 , . . . , π

o
S ), the optimal π o

∈ ∆S
A exists.

For the robust scenario: when M is compact, the fixed point
of f (23), X , exists from Lemma 3 and is given by

X s = max
(C,P)∈M

min
πs∈∆A

gπs (X, C, P), ∀s ∈ [S]. (32)

The function gπs (X, C, P) is concave in (C, P) and convex in π . IfM
is convex, then we apply the minimax theorem (Neumann, 1928)
to switch the order of min and max in (32) to derive

X s = min
πs∈∆A

max
(C,P)∈M

gπs (X, C, P), ∀s ∈ [S]. (33)

Eq. (33) is identical to (28), therefore W r
= X and exists by

Lemma 3. In (33), max(C,P)∈M gπs (X, C, P) is piece-wise linear
in πs and ∆A is compact for all s ∈ [S], thus argminπs∈∆A

ax(C,P)∈M gπs (X, C, P) is non-empty. Finally, since π r
=

(π r
1, . . . , π

r
S ), π

r exists. □

Remark 6. Since max(C,P)∈M gπs (X, C, P) is piecewise linear in πs,
the optimal π r

s is mixed in general. This is consistent with the
results in Wiesemann et al. (2013).

Proposition 2 generalizes the results from Wiesemann et al.
(2013) to show that (28) exists when M is compact and convex
instead of s-rectangular and convex. In particular, if we con-
truct M̂ =

∏
s∈[S] projs(M), where projs(M) is the projection

f the elements of M onto the s coordinate, then the poli-
ies πo and πr can be computed using the robust policy iter-
tion from Wiesemann et al. (2013). Diverging from the min–
ax approach, W o and W r always exist and do not require the

ectangularity conditions (Iyengar, 2005).

.1. Containment and rectangularity

Since the fixed point set V⋆ is a subset of a multi-dimensional
ector space RS , it is possible that V⋆ does not contain its own
xtremal elements. We illustrate this in Fig. 5. We also show that
nterestingly, MDP rectangularity is a sufficient condition for the
ixed point set to contain its own extrema.

Fig. 5 implies that the structure of M may dictate whether
he fixed point set contains its own extrema points. We formally
rove this in the following section.

ssumption 1 (Containment Condition). The parameter uncer-
ainty set M satisfies the containment condition with respect to
if M is compact and for all V ∈ RS ,⋂

argmin
m∈M

hs(V ,m) ̸= ∅,
⋂

argmax
m∈M

hs(V ,m) ̸= ∅. (34)

s∈[S] s∈[S]
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Fig. 5. The argmaxm∈M hs(V ,m) for a value operator h given M when S =

. Here, argmaxm∈M h1(V ,m) = {m1,m3}, argmaxm∈M h2(V ,m) = {m1,m2}.
Therefore, M satisfies Assumption 1.

Assumption 1 states that (1) there exists a parameter m such
that h(·,m)’s fixed point is the extremum of V⋆ and (2) m ∈ M.
Intuitively, if there exists m ∈ M such that V = h(V ,m), then
from Corollary 1, V ∈ V⋆.

Remark 7. Assumption 1 is an h-dependent condition imposed
on the structure of M, and is independent of M’s convexity and
connectivity.

With respect to the Bellman operator f (9) and the policy
evaluation operators gπ (7), the following conditions in min–max
MDP are sufficient to satisfy Assumption 1.

Definition 11 ((s, a)-Rectangular Sets Iyengar, 2005; Nilim &
El Ghaoui, 2005). The uncertainty set M ⊂ RS×A

× ∆SA
S is

(s, a)-rectangular if

M = ×
(s,a)∈[S]×[A]

Msa, Msa ⊂ R ×∆S, ∀(s, a) ∈ [S] × [A]. (35)

Intuitively, (s, a)-rectangularity implies that the MDP parame-
ter uncertainty is decoupled between each state–action.

Definition 12 (s-Rectangular Sets). The uncertainty set M ⊂

RS×A
×∆SA

S is s-rectangular if

M =×
s∈[S]

Ms, Ms ⊂ RA
×∆A

S , ∀s ∈ [S]. (36)

Remark 8. Definition 12 applies to ambiguity sets that arise in
distributionally robust MDPs (Xu & Mannor, 2010; Yang, 2017; Yu
& Xu, 2015).

Example 2 (Wind Uncertainty). Consider the navigation problem
presented in Example 1. If the wind pattern strictly switches
between N wind patterns, then the transition uncertainty at state
s ∈ [S] is given by Ps = {P1

s , . . . , P
N
s }. If the wind pattern is a

mixture of N discrete wind trends, the transition uncertainty at
state s ∈ [S] is Ps = {

∑
i αiP i

s | α ∈ ∆N}. Both wind patterns lead
to s-rectangular uncertainty, given by P =×s∈[S]

Ps.

We show that the rectangularity conditions indeed are suf-
ficient for satisfying Assumption 1 with respect to f (9) and
gπ (7).

Proposition 3. If M is compact and s-rectangular (Definition 12),
M satisfies Assumption 1 with respect to f (9) and gπ (7) for all
π ∈ ∆S

A.

Proof. We first show that M satisfies Assumption 1 with respect
to the Bellman operator. Given s ∈ [S], fs(V , C, P) only depends

on the s component of C and P . From Lemma 1, fs is continuous

7

Fig. 6. MDP with parameter coupling in transition probability across different
states.

in (cs, Ps). Let (c⋆s , P
⋆
s ) be the solution to argmin(cs,Ps)∈Ms fs(V , C, P)

for all ∀ s ∈ [S]. If Ms is compact, (c⋆s , P
⋆
s ) ∈ Ms. We can construct

C⋆ = [c⋆1, . . . , c
⋆
S ] and P⋆ = [P⋆1 , . . . , P

⋆
S ]. If M is s-rectangular,

then (C⋆, P⋆) ∈ M and (C⋆, P⋆) ∈ argmin(C,P)∈M fs(V , C, P) for all
∈ [S]. We conclude that M satisfies Assumption 1.
Given π ∈ ∆S

A and s ∈ [S], gπs only depends on cs and
s as well. We can similarly show that there exists an optimal
arameter (C⋆, P⋆) ∈ argmin(C,P)∈M gπs (V , C, P) for all s ∈ [S]
uch that (C⋆, P⋆) ∈ M. □

Beyond s-rectangularity, there are sets that satisfy Assump-
ion 1 with respect to specific value operators.

xample 3 (Beyond Rectangularity). Consider a four state MDP
ith α-parametrized transition uncertainty M in Fig. 6, where

states are the nodes and actions are the multi-headed arrows.
Each head has an associated tuple (Csa, Psa,s′ ) denoting its cost and
transition probability. The states s2 and s3 have values V2 =

1
1−γ

and V3 = 0 for both f and gπ for all π ∈ ∆S
A.

The states s1 and s4 have transition uncertainty jointly
parametrized by α ∈ [0, 1], therefore violating s-rectangularity
(Definition 12). The optimal cost-to-go values V1 and V4 occur
at different α’s, therefore violating Assumption 1 with respect to
f . However, suppose that at s4, we only choose the action with
cost-transition (0, 1) to s2 in Fig. 6. Then V4 is independent of
. The minimum and maximum V1 occur at α = 1 and α = 0,

respectively. Therefore, M satisfies Assumption 1 with respect to
perator gπ for all π = [πs1 , . . . , πs4 ] where πs4 = [1, 0].

When Assumption 1 is satisfied, the fixed point of H (14)
ontains its own supremum and infimum value vectors.

heorem 3. If h (6) on RS
× M satisfies Assumption 1, then there

xists m,m ∈ M such that h and h (23) and their fixed points X and
X (24) satisfies

h(X) = h(X,m) = X, h(X) = h(X,m) = X . (37)

Additionally, X and X are the least and the greatest elements of
H’s fixed point set V⋆, V ⋆, V

⋆
(22) respectively, and both belong to

V⋆ (17).

= V ⋆, X = V
⋆
, X, X ∈ V⋆.

Proof. From Theorem 2, X and X are the lower and upper bounds
on the fixed point set V⋆. We show that these are the infimum and
supremum elements of V⋆ by showing that they are also elements
of V⋆. From Assumption 1, there exists m,m ∈ M such that
hs(X,m) = minm∈M hs(X,m) and hs(X,m) = minm∈M hs(X,m)
for all s ∈ [S]. Since X and X are fixed points of h(·,m) and h(·,m),
we apply Corollary 1 to conclude that X, X ∈ V⋆. □



S.H.Q. Li, A. Adjé, P.-L. Garoche et al. Automatica 171 (2025) 111970

5

q
o
w
t
G
o

V

V

a
V

V

P

B
m

m

o

V

S
e
V

W
t

g

m

A

b

.2. Performance of non-stationary Bellman update

Consider the wind navigation problem in Example 1, one
uestion posed is whether it is better to use the robust policy,
ptimistic policy, or the next step optimal policy. In this section,
e use the set-theoretic tools to compare the performance of
hese approaches. First, we introduce some notations: let Go

=
πo (7), the fixed point of Go be Vo, Gr

= Gπ
r
, and the fixed point

f Gr be Vr .
o
= {go(V , C, P) | (C, P) ∈ M, V ∈ Vo

}, (38)

r
= {g r (V , C, P) | (C, P) ∈ M, V ∈ Vr

}. (39)

Additionally, the supremum value vectors of Vo and Vr are V
o

nd V
r
respectively and the infimum value vectors are V o and

r , respectively.

V r
s = min

V∈Vr
Vs, V

r
s = max

V∈Vr
Vs, ∀s ∈ [S]. (40)

V o
s = min

V∈Vo
Vs, V

o
s = max

V∈Vo
Vs, ∀s ∈ [S]. (41)

We compare these with the fixed point set of the Bellman oper-
ator, VB

= {minπ gπ (V , C, P) | (C, P) ∈ M, V ∈ VB
} (17), denoted

by V
B
and V B as

B
s = min

V∈VB
Vs, V

B
s = max

V∈VB
Vs, ∀s ∈ [S]. (42)

Theorem 4. If f , go, g r satisfy Assumption 1 on RS
× M, then

the bounding value vectors (42) (41) (40) of the corresponding fixed
point sets VB, Vo (38) and Vr (39) are ordered as

V B
= V o ⩽ V r , V

B
= V

r
⩽ V

o
. (43)

roof. Since V o is the infimum element for the fixed point set
Vo (41), we can apply Theorem 3 to derive

V o
= min

(C,P)∈M
go(V o, C, P). (44)

y definition of π o (29), min(C,P)∈M go(V o, C, P) = min(C,P)∈M
inπ∈∆S

A
gπ (V o, C, P). As the two minima commute,

min
(C,P)∈M

go(V o, C, P) = min
(C,P)∈M

min
π∈∆S

A

gπ (V o, C, P). (45)

Combining (44) and (45), V o is exactly the unique fixed point
of min(C,P)∈M minπ∈∆S

A
gπ (·, C, P). However, by applying Theo-

rem 3 to f on RS
× M, V B is also the unique fixed point of

in(C,P)∈M minπ∈∆S
A
gπ (·, C, P). Therefore V o

= V B.
From (40), V r

= min(C,P)∈M g r (V r , C, P), we can minimize
ver the policy space to lower bound V r as
r ⩾ min

π∈∆S
A

min
(C,P)∈M

g r (V r , C, P). (46)

ince the right hand side of (46) is equivalent to f (V r ), (46) is
quivalent to V r ⩾ f (V r ). From Lemma 4, f is order-preserving in
, we conclude that V o

= V ⋆ ⩽ V r .
From Theorem 3, V

r
is the fixed point of g r , such that

V
r
= max

(C,P)∈M
g r (V

r
, C, P). (47)

e apply minπ to both sides of (47) and use the definition of π r

o derive that V
r
is the fixed point of minπ∈∆A

S
max(C,P)∈M gπ (V r ,

C, P). From Assumption 1, there exists (C, P) ∈ M that maximizes
π (V , C, P), so V

r
equivalently satisfies

V
r
= min

S
gπ (V

r
, C, P).
π∈∆A

8

From Corollary 1, V
r
∈ VB and therefore V

r
⩽ V

B
. Next we show

V
B
⩽ V

r
. From Theorem 3, V

B
is the fixed point of f , such that

V
B

= max
(C,P)∈M

min
π

gπ (V
B
, C, P),

From the min–max inequality,

V
B
⩽ min
π∈∆S

A

max
(C,P)∈M

gπ (V
B
, C, P).

Since π r
∈ ∆S

A,

V
B
⩽ max

(C,P)∈M
g r (V

B
, C, P). (48)

The right-hand side of (48) is g r (V
B
) (23), such that (48) is

equivalent to V
B
⩽ g r (V

B
). Consider the sequence V k+1

= g r (V k)
where V 1

= V
B
. Since g r is a contraction, limk→∞ V k

= V r , the
fixed point of g r . From Lemma 4, g r is order preserving. Therefore
V

B
= V 1 ⩽ V r .
Finally, Theorem 3 implies that V

o
is the fixed point of go:

V
o

= max(C,P)∈M go(V
o
, C, P). By construction, V

o
⩾ minπ∈∆S

A

ax(C,P)∈M gπ (V
o
, C, P). From the min–max inequality,

min
π∈∆S

A

max
(C,P)∈M

gπ (V
o
, C, P) ⩾ max

(C,P)∈M
min
π∈∆S

A

gπ (V
o
, C, P),

such that the right hand side of the inequality is equivalent
to f (V

o
). Following the monotonicity properties of the Bellman

operator f (Puterman, 2014, Thm. 6.2.2), we conclude that V
o
⩾

V
B
. □

Remark 9. Our set-theoretic approach shows that in addition
to having the best worst-case performance among {Vo,VB,Vr

},
Vr also has the smallest variation in performance for the same
uncertainty set M.

Recall Example 1, iteratively updating policy using the next
step cost and transition dynamics will result in a value vector
trajectory that asymptotically converges to VB. In that case, The-
orem 4 implies this policy update scheme has comparable per-
formance to the optimistic policy in non-adversarial wind fields
but will perform no worse than the robust policy in adversarial
winds.

Finally, we generalize the s-rectangularity condition by show-
ing that the optimistic and robust policies exist when the MDP
parameter set M satisfies Assumption 1.

Corollary 3 (Robust MDP under Assumption 1). If M is compact,
convex, and f , go, g r satisfy Assumption 1 on RS

×M, then W o (27)
and W r (28) are the infimum and supremum value vectors of Vo and
Vr ,

W o
s = inf

V∈Vo
Vs,W r

s = sup
V∈Vr

Vs, ∀s ∈ [S], (49)

where Vo (38) and Vr (39) are the fixed point sets of Go and Gr ,
respectively (see Fig. 7).

Proof. When f satisfies Assumption 1 on RS
× M, Theorem 3

shows that V B
= W o, V

B
= W r . If go, and g r also satisfies

ssumption 1 on RS
× M, then we apply Theorem 4 to derive

W o
= V o and W r

= V
r
. This proves the corollary statement. □

Remark 10. When Assumption 1 is not satisfied, W o and W r still
ound V o and V

r
.
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6. Value iteration for fixed point set computation

In the previous sections, we proved the existence of a fixed
point set for value operators with compact parameter uncertainty
sets and re-interpreted robust control. Next, we derive an itera-
tive algorithm for computing the bounds of the fixed point set V
iven a value operator h and parameter uncertainty set M.

lgorithm Sketch. Based on the set-based value iteration (20),
e iteratively find the one-step bounds of H(Vk) to converge the
ounds of the fixed point set.
For any compact set V ∈ K(RS), the one step bounds of H(V)

re the result of applying the one-step bound operators h and
h (23) to the extremal points of V .

heorem 5 (One Step H Bounds). Consider the set operator H (14)
nd its bound operators h and h (23) induced by h on RS

× M (6).
For a compact set V ⊂ RS , H(V) is bounded by h(V ) and h(V ) (23)
s

(V ) ⩽ V ⩽ h(V ), ∀ V ∈ H(V). (50)

where V and V (22) are the extremal elements of V . If h satisfies
ssumption 1 on RS

× M and V , V ∈ V , then h(V ) and h(V ) are
the supremum and infimum elements of H(V), respectively—for all
s ∈ [S], hs(V ) and hs(V ) satisfy

hs(V ) = inf
(V ,m)∈V×M

hs(V ,m), hs(V ) = sup
(V ,m)∈V×M

hs(V ,m). (51)

Proof. For all s ∈ [S], hs(V ,m) ⩽ hs(V ) for all m ∈ M. If h is K (V )-
Lipschitz and α-contractions in M, then h is order-preserving
Lemma 4) such that hs(V ) ⩽ hs(V ) for all V ∈ V . We conclude
hat

(V ,m) ⩽ h(V ), ∀(V ,m) ∈ V × M. (52)

ince h is an upper bound, and sup is the least upper bound,
t holds that supV ,m hs(V ,m) ⩽ h(V ). We use the definition of
H(V) (14) to conclude that V ⩽ h(V ) for all V ∈ H(V). The
nequality h(V ) ⩽ V ∀V ∈ H(V) can be similarly proved.

If h satisfies Assumption 1 on RS
×M and V , V ∈ V , Assump-

tion 1 states that there exists m ∈ M such that h(V ,m) = h(V ).
Therefore, h(V ) ∈ H(V). Since h(V ) also lower bounds all the
lements of H(V), it is the infimum element of H(V). The fact that
he greatest element of H(V) is h(V ) can be similarly proved. □

Based on Theorem 5, we propose the following bound approx-
mation algorithm of the fixed point set V⋆ (17) for a set-valued
perator H (6).

.1. Computing one-step optimal parameters

Algorithm 1 is stated for a general MDP parameter set M and
oes not specify how to compute lines 4 and 5. Here are some
olution methods for different types of M.
9

Algorithm 1 Bounding the fixed point set V

Input: C, P , V 0, ϵ.
Output: V , V
1: V 0

:= V
0

:= V 0

2: e0 =
1−γ
γ
ϵ

3: while γ

1−γ e
k ⩾ ϵ do

4: V k+1
s = minm∈M hs(V k,m), ∀s ∈ [S]

5: V
k+1
s = maxm∈M hs(V

k
,m), ∀s ∈ [S]

6: ek+1
= max

{
∥V k+1

− V k
∥, ∥V

k+1
− V

k
∥

}
7: k = k + 1
8: end while

(1) Finite M. If M = {m1, . . . ,mN} has a finite number of
elements, we can directly compute line 4 as

V k+1
= min

{
hs(V k,mi) | i = {1, . . . ,N}

}
. (53)

For line 5, we replace min with max in (53).
(2) Convex M. When M is a convex set, the computation

depends on h. If h = gπ is the policy operator, lines 4
and 5 can be solved as convex optimization problems. If
h is the Bellman operator f , lines 4 and 5 take on min–
max formulation and is NP-hard to solve in the general
form Wiesemann et al. (2013). When M can be character-
ized by an ellipsoidal set of parameters, the solutions to
lines 4 and 5 is given in Wiesemann et al. (2013).

6.2. Algorithm convergence rate

When lines 4 and 5 are solvable, Algorithm 1 asymptotically
converges to approximations of the bounding elements of V⋆. If
M satisfies Assumption 1 with respect to h, Algorithm 1 derives
the exact bounds of V⋆. Algorithm 1 has similar rates of conver-
gence in Hausdorff distance as standard value iteration using h
on RS .

Theorem 6. Consider the value operator h, compact uncertainty set
M, and the fixed point set V⋆ of the set-based operator H (14)
induced by h on RS

× M. If M satisfies Assumption 1 with respect
to h, then at each iteration k,

∥V k+1
− V ⋆∥∞ ⩽ α∥V k

− V ⋆∥∞,

∥V
k+1

− V∥∞ ⩽ α∥V
k
− V

⋆
∥∞,

(54)

where all norms are infinity norms, and V ⋆, V
⋆
are the infimum and

supremum bounds of V , respectively. At Algorithm 1’s termination,
V k, V

k
satisfies

max
{
∥V k

− V ⋆∥∞, ∥V
k
− V

⋆
∥∞

}
< ϵ. (55)

Proof. From Algorithm 1, V
k+1

= h(V
k
). From Lemma 3, h is an

-contraction. We obtain

∥V
k+1

− V
⋆
∥∞ ⩽ α∥V

k
− V

⋆
∥∞

and note that (54) holds by induction. Next, we apply triangle
inequality to ∥V

k
− V

⋆
∥∞ as

∥V
k
− V

⋆
∥∞ ⩽ ∥V

k
− V

k+1
∥∞ + ∥V

k+1
− V

⋆
∥∞. (56)

We can then use ∥V
k+1

−V
⋆
∥∞ ⩽ α∥V

k
−V

⋆
∥∞ to bound (56) as

∥V
k
− V

⋆
∥∞ ⩽ 1

1−α ∥V
k
− V

k+1
∥∞. A similar argument can show

that ∥V k
−V ⋆∥ ⩽ 1

∥V k
−V k+1

∥ . When Algorithm 1’s while
∞ 1−α ∞
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Fig. 8. Wind field MDP state space and action space.

ondition is satisfied, max
{
∥V

k
− V

⋆
∥∞, ∥V k

− V ⋆∥∞

}
⩽ ϵ. This

oncludes our proof. □

In particular, the Bellman operator f and policy operator gπ
re γ -contractive on RS , where γ is the discount factor. Therefore,

Theorem 5 applies with α = γ .

Remark 11. Theorem 6 implies that at the termination of Algo-
rithm 1, the fixed point set V⋆ can be over-approximated by
⋆
⊆ Vapprox :=

∏
s∈[S]

[V k+1
s − ϵ, V

k+1
s + ϵ],

here k is the last iterate before Algorithm 1 terminates.

. Path planning in non-stationary wind fields

We apply set-based value iteration to a wind-assisted prob-
bilistic path planning problem in a non-stationary wind field
Wolf et al., 2010). MDP as a model for wind-assisted path plan-
ing of balloons in the stratosphere and exoplanets has recently
ained traction (Bellemare et al., 2020; Wolf et al., 2010). Finite
tate–action MDPs have been shown to be a viable high-level path
lanning model (Wolf et al., 2010) for such applications.

ission Objective. In a two-dimensional wind-field, the wind-
ssisted balloon aims to reach target state (8, 8) in Fig. 8 using
inimum fuel.

on-stationary Wind Fields. By collecting wind data on the
nvironment’s wind field, an MDP can be created and a policy that
andles stochastic planning can be deployed. However, wind can
e a time-varying factor that causes the expected optimal policy
o have worse-than-expected worst-case performance. We built an
deal uncertain wind field to demonstrate how the set Bellman
perator can be used to predict the best and worst-case behavior
f a robust policy.

DP Modeling Assumptions. Following Wolf et al. (2010), we
odel the path planning problem in a non-stationary wind field
s an infinite horizon, discounted MDP with discrete state–
ctions. While balloons typically traverse in three dimensions,
e assume that the wind is consistent in the vertical direction
nd that the final target is any vertical position along the given
wo-dimensional coordinates.

tates. States are grouped into three different regions based on
heir wind variability as shown in Fig. 8: [S] = [Scalm]

⋃
[Sgusty]

[Sunreliable].

(1) s ∈ [Scalm]. The wind magnitude changes between [0, 0.5],
and the wind direction changes between [0, 2π ]. [Scalm]

= {(i, j) | (0, 0) ⩽ (i, j) ⩽ (2, 8), (0, 6) ⩽ (i, j) ⩽ (8, 8)}.
10
Fig. 9. Transition probabilities for the three different wind regions.

(2) s ∈ [Sgusty]. The wind magnitude is 1, while the wind
direction changes between [0, 2π ]. Sgusty = {(i, j) | (3, 3) ⩽
(i, j) ⩽ (5, 5)}.

(3) s ∈ [Sunreliable]. A wind front occasionally moves across an
otherwise windless region. The wind magnitude is either 0
or 1 and the wind direction changes between [π/4, π/2].

Actions. The balloon is equipped with an actuator that provides a
constant thrust of 1 unit power in 8 discretized directions shown
in Fig. 8b. We assume that this actuation force is enough to move
the balloon across one state in wind with magnitude ⩽ 0.5, and
s otherwise not strong enough to overcome the wind effects. In
ddition, each state has an action corresponding to no thrust.

ransition Probabilities. The transition probabilities are region-
ependent. In the states [Scalm] and [Sgusty], the transition dynam-
cs are stochastic but stationary in time. In the states [Sunreliable],
he transition dynamics are stochastic but change over time. We
efine the following neighboring states for each state s ∈ [S].

(1) N (s): all 8 neighboring states of state s.
(2) N (s, a, 0): the neighboring state of s in the direction of a.
(3) N (s, a, 1): the neighboring state of s in the direction of a

plus the two states adjacent to the neighbor state, shown
in green in Fig. 9a.

(4) N (s, a, 2): state s’s neighboring state in the opposite direc-
tion of the action a plus its clockwise neighbor, shown in
purple in Fig. 9b.

n the calm wind region, the transition probabilities are given by

sa,s′ =

{
1

N (s,a,1) , s′ ∈ N (s, a, 1)
0 otherwise,

∀ s ∈ [Scalm]. (57)

In the gusty wind region, the transition probabilities are given by

Psa,s′ =

{
1

N (s) , s′ ∈ N (s)
0 otherwise,

∀ s ∈ [Sgusty], ∀ a ∈ [A]. (58)

n the unreliable wind region, the transition probabilities vary
etween transition dynamics P1

s and P2
s .

1
sa,s′ =

{
1, s′ ∈ N (s, a, 0)
0 otherwise,

∀ s ∈ [Sgusty], ∀ a ∈ [A]. (59)

2
sa,s′ =

{
0.5, s′ ∈ N (s, a, 2)
0 otherwise,

∀ s ∈ [Sgusty], ∀ a ∈ [A]. (60)

Collectively, P1
s and P2

s collectively form the uncertainty set Ps ⊂

∆A
S defined at each state.

i
Ps = {Psa | i ∈ {1, 2}, a ∈ [A]}, ∀s ∈ [Sunreliable]. (61)
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Fig. 10. Visualization of optimistic and robust policies.

able 1
ellman, optimistic policy, robust policy value bounds.
Set Maximum value Minimum value

VB 70.61 62.25
Vo 101.58 62.25
Vr 70.63 70.52

Cost. At each state–action, the cost is the sum of the current
distance from target position starg = (8, 8), as well as the fuel
xpended by the given action.

((i, j), a) =

√
(i − starg [0])2 + (j − starg [1])2 +

1
2
∥a∥2.

e take ∥a∥2 = 1 for all actions except for the staying still action,
here ∥a∥2 = 0.

.1. Bellman, optimistic policy, and robust policy

We compute the optimistic and robust bounds with parameter
ncertainty in P when s ∈ [Sunreliable] by running Algorithm 1. The
esults are shown in Fig. 10.

We denote the optimistic policy as π o and the robust policy
s π r , and derive the bounds of their respective value vector sets
o (38) and Vr (39) using Algorithm 1. The output is compared
gainst the bounds of the set-based Bellman operator’s fixed
oint set V⋆ in Table 1.

on-stationary wind field Next, we consider a non-stationary
ind field: at each time step k, the transition probability Pk

s chosen at random from P (61). We compare three different
olicy update schemes: (1) stationary optimistic policy π o as
olicy operator go (38), (2) stationary robust policy π r as policy
perator g r (39), and (3) Bellman policy that is one-step optimal
or the MDP ([S], [A], Pk, C, γ ) as f (9). These three different
olicy schemes are given by
k+1

= go(V k, C, Pk), (62)
k+1

= g r (V k, C, Pk), (63)
k+1

= f (V k, C, Pk). (64)

he cost-to-go at state sorig = [0, 0] is plotted in Fig. 11. The
ptimistic policy (62) has the greatest variation in value over the
ourse of 50 MDP time steps. Both the robust policy (63) and
he Bellman policy (64) achieve better upper-bound at each MDP
teration. The Bellman policy (64) achieves less than 70 in cost-to-
o on average, which is the best among all three policy schemes.
s we discussed in Remark 9, the robust policy has the smallest
ariance in value in the presence of wind uncertainty, achieving
value difference of less than 0.1.

ampled solutions. We can compute a sampled MDP model

ased on 50 samples of wind vectors for each state. Based on

11
Fig. 11. Comparison of robust policy, optimistic policy, and Bellman policy’s
value trajectories in non-stationary wind fields. Center blue line is the average
over 50 trials. The shaded blue region denotes the standard variation. The top
and bottom lines are the extrema values of the fixed points.

these samples, we add the action vector and compute the statisti-
cal distribution of state transitions. We then compute the value of
these stationary sampled MDPs, and compare 9 randomly selected
states’ values. The resulting scatter plot is shown in Fig. 12.

8. Conclusion

In this paper, we lifted contraction operators that solve
Markov decision processes to operate on compact sets of vectors.
Using fixed point analysis, we showed that the set-based value
operators have fixed point sets that are invariant to the pa-
rameter uncertainties. These sets were applied to non-stationary
and parameter uncertain MDPs to derive novel results in these
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Fig. 12. Comparison of different optimal value vectors under the Bellman
operator for 50 randomly sampled MDPs. On the x-axis, the state number is
computed as i × 9 + j.

settings. Finally, we demonstrated our results on path planning
in a non-stationary wind field. In the future, we aim on apply
set-based value operators to stochastic games in the presence of
uncoordinated players.

Appendix A. Set sequence convergence

Lemma 5. Let {Vn} ⊆ K(RS) be a converging sequence for dK with
Vn → V as n → ∞. For all V ∈ V , there exists a converging
ubsequence {V ϕ(n)}n∈N whose limit is V for ∥ · ∥∞.

roof. Let V ∈ V . We define the strictly increasing function ϕ on
as follows: ϕ(0) := 0 and for all n ∈ N, ϕ(n + 1) := min{j >
(n) | ∃ V j

∈ V j, ∥V − V j
∥∞ = d(V ,V j) ⩽ (n + 1)−1

}. Finally, as
or all n ∈ N∗, ∥V − V ϕ(n)∥∞ ⩽ (ϕ(n) + 1)−1, the result holds. □

ppendix B. Proof of Lemma 1

roof. Let (V ,m) ∈ RS
×M and consider a sequence {(Vk,mk)}k∈N

⊂ RS
× M that converges to (V ,m). It holds that ∥h(Vk,mk) −

h(V ,m)∥∞ ⩽ ∥h(Vk,mk) − h(V ,mk)∥∞ + ∥h(V ,mk) − h(V ,m)∥∞,
where from the α-contractive property of h(·,mk), ∥h(Vk,mk) −

h(V ,mk)∥∞ ⩽ α∥Vk − V∥∞. From the K (V )-Lipschitz property of
h(V , ·),

∥h(V ,mk) − h(V ,m)∥∞ ⩽ K (V )∥mk − m∥∞.

As both limk→∞ ∥Vk − V∥∞ → 0 and limk→∞ ∥mk − m∥∞ → 0,
∥h(Vk,mk) − h(V ,m)∥∞ → 0 and h is continuous. □

Appendix C. Proof of Lemma 2

Proof. We show that both the Bellman operator f and the pol-
icy evaluation operator gπ satisfy the contracting/order preserv-
ing/Lipschitz properties given in Definition 4. Contraction: given
(C, P) ∈ M, gπ (·, C, P) and f (·, C, P) are both γ -contractions (Put-
erman, 2014, Prop. 6.2.4) on the complete metric space (RS, ∥ ·

∥∞), when γ < 1.
Order preservation: given (C, P) ∈ M, the operator gπ (·, C, P)

is order preserving (Puterman, 2014, Lem. 6.1.2). Consider U, V ∈

RS where U ⩽ V . If gπ (·, C, P) is order-preserving, gπ (U, C, P) ⩽
gπ (V , C, P) for all π ∈ Π . Taking the infimum over Π , we
have f (U, C, P) = infπ∈Π gπ (U, C, P) ⩽ infπ∈Π gπ (V , C, P) =

f (V , C, P).
K (V )-Lipschitz: given (C, P), (C ′, P ′) ∈ M and V ∈ RS , we

prove the following for each s ∈ [S],

|fs(V , C ′, P ′) − fs(V , C, P)|
⩽ ∥c ′

− c ∥ + γ ∥P ′
− P ∥ max{∥π ⋆∥ , ∥π̂ ∥ }∥V∥ . (C.1)
s s ∞ s s ∞ s ∞ s ∞ ∞

12
We prove (C.1) by case: (1) fs(V , C ′, P ′) ⩾ fs(V , C, P), and (2)
fs(V , C ′, P ′) ⩽ fs(V , C, P). For case (1), let π̂ (10) be the op-
timal policy for f (V , C ′, P ′) and π ⋆ be the optimal policy for
f (V , C, P). For s ∈ [S], suppose fs(V , C ′, P ′) ⩾ fs(V , C, P), then 0 ⩽
fs(V , C ′, P ′)− fs(V , C, P) ⩽ (c ′

s)
⊤π̂s−c⊤

s π
⋆
s +γ (P ′

sπ̂s)⊤V −γ (Psπ ⋆s )
⊤

V . Since π ⋆ is sub-optimal for f (V , C ′, P ′), we upper bound
|fs(V , C ′, P ′) − fs(V , C, P)| ⩽ (c ′

s − cs)⊤π ⋆s + γ [(P ′
s − Ps)πs

⋆
]
⊤V .

Since π ⋆s , π̂s ∈ ∆A, ∥π ⋆s ∥∞ ⩽ 1. We conclude that (C.1) holds
when fs(V , C ′, P ′) ⩾ fs(V , C, P). For case (2), fs(V , C ′, P ′) ⩽
fs(V , C, P), (C.1) also holds by similar arguments.

Letting m′
= (C ′, P ′) and m = (C, P), we can upper bound

f (V ,m) − f (V ,m′) = f − f ′ as

∥f − f ′
∥∞ ⩽ max

s∈[S]
{∥c ′

s − cs∥∞ + γ ∥(Ps − P ′

s)
⊤V∥∞} (C.2)

⩽ max(1, γ ∥V∥∞)∥m − m′
∥∞. (C.3)

The policy evaluation operator gπ satisfies (C.1) if max{∥π ⋆s ∥∞,
∥π̂s∥∞} is replaced by ∥πs∥∞. Since ∥πs∥∞ ⩽ 1, gπ is K (V )-
Lipschitz. □
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