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Blameless and Optimal Control under Prioritized Safety Constraints

Natalia Pavlasek1, Sarah H.Q. Li2, Behçet Açıkmeşe1, Meeko Oishi3, and Claus Danielson3

Abstract— In many resource-limited optimal control prob-
lems, multiple constraints may be enforced that are jointly
infeasible due to external factors such as subsystem failures,
unexpected disturbances, or fuel limitations. In this manuscript,
we introduce the concept of blameless optimality to characterize
control actions that a) satisfy the highest prioritized and feasible
constraints and b) remain optimal with respect to a mission
objective. For a general optimal control problem with jointly
infeasible constraints, we prove that a single optimization prob-
lem cannot find a blamelessly optimal control sequence. Instead,
finding blamelessly optimal control actions requires sequentially
solving at least two optimal control problems: one to determine
the highest priority level of constraints that is feasible and
another to determine the optimal control action with respect
to these constraints. We apply our results to a rocket landing
scenario in which violating at least one safety-induced landing
constraint is unavoidable. Leveraging the concept of blameless
optimality, we formulate blamelessly optimal controllers that
can autonomously prioritize the constraints most critical to a
mission.

I. INTRODUCTION

Consider a scenario in which a planetary lander is not
able to perform its primary landing and must instead au-
tonomously select a landing site. In order to make the best
use of resources and accomplish the greatest number of
mission goals possible, the lander should select a site by
evaluating the potential benefits, such as safety of the landing
site, or proximity to sites of interest. Such an evaluation of
trade-offs typically rests on an ordering of priorities: first pro-
tecting the lander from damage, then attempting to achieve
the highest priority mission goals. Designing autonomous
systems to adhere to a prioritization that reflects operational
choices is an important yet largely unexplored problem [1],
that reflects upon the autonomous systems’ perceived relia-
bility, trustworthiness, and overall effectiveness [2]. A lander
whose actions reflect mis-ordered priorities (i.e., selecting a
landing site that results in damage to the vehicle at the cost
of being close to a site of interest, for example) would be
considered misguided and even blameworthy, as its actions
are in conflict with priorities.

In this paper, we propose the design of controllers for
autonomous systems, that are both optimal and blameless.
We interpret blamelessness, based on a formal description
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Fig. 1: Optimal controllers for a lander should satisfy con-
straints in order of their priority, in order to be blameless.

in [3], as the ability to avoid actions whose outcomes are
inconsistent with an ordered prioritization of constraints.
Such mis-prioritizations only appear when not all constraints
can be satisfied, that is, when the system operates in regions
of the state-space that are infeasible with respect to some
constraints. For instance, in the landing scenario in Figure 1,
if a landing zone that satisfies all safety constraints exists,
an alternative landing site does not have to be considered.

While extensive work has considered finding optimal solu-
tions under constraints, considerably less work has been done
on designing solutions under infeasible constraints. Unlike
standard optimal control problems, in which infeasibility is
commonly averted by softening the constraints [4], controller
design under infeasibility must focus not only on satisfying
as many constraints as possible, but also on satisfying higher
priority constraints over ones that are lower priority. That
is, ensuring blamelessness in autonomous systems means
that controllers must be designed to satisfy constraints in a
manner that reflects their underlying prioritization. Further,
due to the urgency associated with operation in infeasible
scenarios, methods to synthesize blameless controllers should
have low computational cost.

Related work. Lexicographic optimization, in which a
finite number of ordered objective functions are sequentially
optimized, such that low priority objectives do not inter-
fere with higher priority objectives [5], is one method to
ensure prioritization amongst constraints. It has been used
to address applications of prioritized safety [6], [7], as well
as to relax constraints in decreasing order of priority under
infeasibility [8], [9]. However, the primary disadvantage of
lexicographic methods is that even for convex problems,
the problem must be solved iteratively, leading to a high
computational burden. Typically lexicographic optimization
requires solving as many optimization problems as there are
prioritized objectives [10].



Related work in reachability has examined conditions
under which a controller exists, that ensures feasibility with
respect to a known set of constraints [11], [12]. However,
these approaches typically presume that all constraints are
of the same priority, or rely upon a pre-determined trade-
off between safety and performance [13]. Reachability and
positive invariance have been integrated into path planning
approaches that prioritize safety [14]–[19], but are not readily
extendable to multiple priorities and objectives.

Contributions. We provide a formal definition of blame-
lessness and formulate the problem of designing blameless
controllers within an optimal control framework, amenable
to a wide variety of application domains. We show that
for general objective functions and constraints, it is not
possible to solve for optimality and blamelessness in a
single optimization problem, i.e., that no single continuous
objective function can produce a blamelessly optimal action.
We further show that it is possible to solve for optimality
and blamelessness in exactly two optimization problems; the
first determines the highest priority set of constraints that can
be solved and the second finds the optimal control actions
under these constraints. We demonstrate our algorithm on a
real-time rocket landing problem, whose safety requirements
are jointly infeasible due to fuel limitations.

Notation: We use the shorthand x0:N to denote the
sequence of variables x0, . . . , xN , for xi ∈ Rn, i ∈
{1, · · · , N}. A sequence of constrained control inputs is
denoted as u0:N−1 = u0, . . . , uN−1, uk ∈ U ⊆ Rℓ,
with u0:N−1 ∈ UN . The notation [N ] is used to denote
{1, . . . , N}. For the set X , the complement is denoted X c,
so that x ∈ X c implies x /∈ X .

II. BLAMELESS OPTIMAL CONTROL

This section introduces the concept of a blamelessly opti-
mal control sequence given user-prioritized constraints. The
state trajectory x0:N is given by the discrete-time dynamics,

xk+1 := f(xk, uk) ∈ Rn,∀k ∈ [N − 1], (1)

under control sequence u0:N−1 ∈ RNℓ and initial state x0 ∈
X0 ⊆ Rn. We assume that the dynamics (1) are subject to a
set of prioritized constraints that are ranked by importance.

Assumption 1 (Prioritized safety sets). The user-defined
compact sets {Zi}1≤i≤m = Z1, . . . ,Zm ⊆ Rp, with p ≤ n,
are prioritized state constraints on a subset of the state xk,
such that Z1 has the highest priority. For ease of notation,
it is assumed that p = n, meaning that the full state at a
given time is constrained by the safety sets.

The ordering of the sets Zi is user-defined and dictates
the prioritization of the constraints to be satisfied in the
event that the system dynamics and control constraints cause
the problem subject to a subset of the safety constraints to
be infeasible. Also note that, without loss of generality, we
presume that these constraint sets are terminal constraints,
i.e., applicable to only the state at the last time instant, xN .
We recast the prioritized safety sets as nested constraint sets.

Definition 1 (Nested constraint sets). Let the nested con-
straint set Yi be defined by Yi =

⋂m+1−i
j=1 Zj , such that

Y1 ⊆ . . . ⊆ Ym.

Example 1. Consider a sample-return mission in which an
autonomous lander is carrying a rover that will drive from
the landing site to sites of interest to collect samples, but
can only drive a limited distance. A safe landing area is
defined near two points of interest, denoted by A and B. If
feasible, the lander should select a landing site from which
the rover can collect material from both sites of interest,
but should avoid landing too close to the sites and risking
contaminating the material. This example is depicted in
Figure 1. The prioritized sets represent first landing in the
designated landing area (Z1), then avoiding regions which
may damage the scientifically interesting material B and
A (Z2 and Z3, respectively), then landing in an area from
which the interesting sites B and A can be reached by the
rover (Z4 and Z5, respectively). The nested constraint sets
describe landing sites that will not contaminate sites A or
B and from which the rover can reach both A and B (Y1),
sites that will not contaminate sites A or B and from which
the rover can only reach site B (Y2), sites that will not
contaminate sites A or B, but from which the rover cannot
reach either site (Y3), and sites that avoid contaminating
only site B (Y4), and all sites in the designated landing
area (Y5).

Nested constraint sets provide an intuitive understanding
of blameworthiness, in which it is desirable for an au-
tonomous system to sacrifice satisfaction of low priority con-
straints to ensure the satisfaction of high priority constraints.
For instance, we are willing to sacrifice reaching site A if it
ensures that the lander does not damage the area surrounding
site B. In short, we wish to maximize the index i such that
Zj is satisfied for all j ≤ i, or equivalently, minimize i such
that Yi is satisfied.

Remark 1. We assume that at least one of the nested
constraint sets is non-empty Yi ̸= ∅. Thus, Yj ⊇ Yi are
non-empty for j ∈ {i, . . . ,m}.

We formally define the concept of blameworthiness of a
control sequence with respect to the nested constraint sets.

Definition 2 (Blameworthy control sequence). Suppose that
the smallest nested constraint set that can be satisfied given
the system dynamics, control constraints and initial condition
is Yi⋆ . A control sequence u0:N−1 ∈ RNℓ that results in the
state trajectory x0:N is blameworthy if xN /∈ Yi⋆ .

A control sequence is blameworthy if there exists an
alternative control sequence that reaches a higher priority
safety set. In Example 1, a control sequence that causes the
lander to land in a region that may damage sites A or B is
blameworthy if there is an alternative control sequence that
would cause the lander to land in a region in which damage
is unlikely to occur. If there exists no such alternative control
sequence, it is blameless.



Fig. 2: Illustration of the concepts of blameworthiness and
blamelessness.

Definition 3 (Blameless control sequence). A control se-
quence u0:N−1 ∈ RNℓ is blameless if it is not blameworthy.

A blameless control sequence minimizes the index i ∈ [m]
such that the resulting state sequence x0:N given by (1),
satisfies xN ∈ Yi.

For the set of initial states given by X0 ⊆ Rn and the input
constraint set by U ⊆ Rℓ, we define the dynamically feasible
set, defined by the dynamics (1) and the control constraints,
u0:N−1 ∈ UN as follows.

Definition 4 (Dynamically feasible set). The set of states
and control sequences achievable from the initial state sub-
ject to the dynamics and control constraints is called the
dynamically feasible set. It is denoted as

F(X0,U) = {(x0:N , u0:N−1) | xk+1 = f(xk, uk),

uk ∈ U , x0 ∈ X0,∀k ∈ [N−1]} ⊆ R(N+1)n+Nℓ. (2)

The concepts of blameworthiness and blamelessness are
depicted in Figure 2. The set FN (X0,U) = {xN |xN ∈
f for some f ∈ F(X0,U)} is the set of terminal states in
the dynamically feasible set. A controller that results in a
terminal state that lies in the intersection of FN (X0,U) and
Y3 is blameless since Y3 is the highest priority set that
is dynamically feasible. A control sequence that results in
a terminal state that is not in Y3 is blameworthy since a
solution that results in the terminal state being in a higher
priority set exists.

We assume the user-defined continuous objective, referred
to as the mission objective, is

q(x0:N , u0:N−1) : RNn × RNℓ 7→ R, (3)

where q evaluates the cost of each state and control sequence.
For a given objective q, we can define a blamelessly optimal
control sequence as follows.

Definition 5 (Blameless optimality). Consider a state
and control sequence (x0:N , u0:N−1) ∈ F(X0,U), where
F(X0,U) is given by (2). The control sequence u0:N−1 is
blamelessly optimal if

1) It is blameless according to Definition 3, and

Fig. 3: Visualization of the need for blameless optimality.
Point xopt is optimal with respect to the blue objective
subject to the dynamics constraints but is in Y2. Point
xblmless opt achieves a higher cost than xopt, but is blame-
lessly optimal since is in Y1.

2) For all (x̂0:N , û0:N−1) ∈ F(X0,U) where û0:N−1 is
blameless,

q(x0:N , u0:N−1) ≤ q(x̂0:N , û0:N−1). (4)

Problem 1. Given nested constraint sets {Yi}1≤i≤m (Defini-
tion 1), and initial state x0 ∈ X0, find a blamelessly optimal
control sequence u0:N−1 ∈ UN .

Problem 1 entails finding a control sequence that leads to
the satisfaction of the largest number of safety sets possible,
while taking into account the prioritization of the sets and
optimality with respect to objective q in (3).

Remark 2. Critically, we assume that not all nested con-
straint sets Yi are feasible. Therefore, Problem 1 is equiva-
lent to finding 1) the smallest index i⋆ such that xN ∈ Yi⋆ is
feasible, and 2) the control sequence u0:N−1 that is optimal
under the constraint xN ∈ Yi⋆ .

III. SOLVING FOR BLAMELESSLY OPTIMAL CONTROL
SEQUENCES

Blamelessness and optimality may be competing objec-
tives when the optimal solution with respect to objective q
lies outside of the highest priority safety set, as is the case in
Figure 3. In this section, we discuss various solution methods
for finding blamelessly optimal control sequences.

A. Need for Blameless Optimality

We illustrate the need for blameless optimality in Figure 3
for a one-dimensional state space and a one-dimensional
control space. The objective q given by (3) is a quadratic
function of the state, shown by the blue curve. The nested
safety sets are by the shaded regions: the green, yellow,
and blue regions correspond to Y1, Y2, and Y3, respectively.
The red hashed region shows states that are infeasible under
F(X0,U) given by (2). Although xblmless−opt has a higher
cost than xopt, it is preferable to xopt because it satisfies a
higher priority nested constraint set, Y1.

B. Related Methods

The concept of priority within optimization problems is
not novel. Some related concepts the exist in the literature
are discussed in the following sections.



1) Connection with Lexicographic Optimization: The lex-
icographic optimization problem

min
w∈W

(q1(w), . . . , qm(w)) ,

in which w ∈ Rη is the solution variable, W is the set
of feasible solutions, and (·, . . . , ·) denotes an ordering, is
typically addressed by iteratively solving

for j = 1, . . . ,m :

min
w∈W

qj(w) s.t. qi ≤ q⋆i , i = 1, . . . , j − 1,

where q⋆i is the optimal value of the ith problem. In
lexicographic optimization, multiple ordered objectives are
optimized. This is related to Problem 1, in that a notion of
priority exists within an optimization problem.

It is possible to construct an algorithm that uses an iter-
ative approach similar to that of lexicographic optimization
to solve for a blamelessly optimal control sequence. This
algorithm, shown below, iteratively imposes constraints in
order of priority.

Algorithm 1 Brute-Force Blameless Control

Set i = 0
while not feasible do

Loosen constraints i← i+ 1
Solve

min
u0:N−1

q(x0:N , u0:N−1) (5a)

s.t. xk+1 = f(xk, uk), x0 ∈ X0, (5b)
uk ∈ U , xN ∈ Yi (5c)

end while

Proposition 1. Under Assumption 1, Algorithm 1 produces
a control sequence u0:N−1 ∈ UN that is blamelessly optimal
(Definition 5).

Proof. Suppose the control sequence found using Algo-
rithm 1 was blameworthy for constraint Yj . Then, by defi-
nition there exists û0:N−1 ∈ UN such that x̂N ∈ Yj . Thus,
problem (5) is feasible and therefore xN ∈ Yj .

While Algorithm 1 produces a blamelessly optimal control
sequence, it is not an ideal solution because of the excessive
cost that comes from solving as many optimization problems
as there are prioritized constraints. For a scenario with m
prioritized safety constraints, Algorithm 1 solves m − 1
infeasible optimization problems and 1 feasible optimization
problem in the worst case. We are interested in finding a
more computationally efficient solution to Problem 1, that is
amenable to real-time application in safety-critical systems.

2) Connection with Reachability Analysis: We can show
that blamelessness can equivalently be defined using the
successor sets used in reachability analysis [20]. A successor
set is defined as follows.

Definition 6 (Successor Set). [21, Def.10.3] Consider the
set of initial conditions X0 ⊆ Rn and set of inputs U . The N -
step successor set under the input constraints u0:N−1 ∈ UN

and dynamics (1) is given by

Suc(X0,UN ) = {x1, . . . , xN | ∃uk ∈ U , x0 ∈ X0

xk+1 = f(xk, uk),∀k ∈ [N ]}. (6)

We use the shorthand Suc(X0) = Suc(X0,UN ), and
denote nth state in Suc(X0) as Sucn(X0). For a given
input sequence u0:N−1 ∈ UN , we use the shorthand
Suc(X0, u0:N−1). The following proposition formulates
blamelessness using successor sets.

Proposition 2. The control sequence u0:N−1 ∈ UN

is blameless if Yi ∩ SucN (X0) ̸= ∅ implies
SucN (X0, u0:N−1) ∈ Yi for all i = 1, . . . ,m.

Proof. If Yi ∩ SucN (X0) ̸= ∅, then there is a control
sequence u0:N−1 such that xN ∈ Yi. Then, u0:N−1 is
blameless if SucN (X0, u0:N−1) ∈ Yi.

C. Blamelessness and Optimality Relationship

In this section, we show that in general, finding blame-
lessly optimal control sequences requires the solution of two
optimization. We show this by contradiction. We use this
result to formulate a framework for solving for blamelessly
optimal control sequences that moves the computational
complexity involved in the brute force method, (5), offline.

Consider the problem of designing an objective function
that produces control sequences that are simultaneously
blameless and optimal with respect to objective q. We
introduce the notation q̂ to represent a continuous objective
that, when minimized, results in a control sequence that is
blameless.

Problem 2. Find a continuous objective function q̂ : RNn×
RNℓ 7→ R for the optimization problem

min
u0:N−1∈RNℓ

q̂(x0:N , u0:N−1) (7a)

s.t. (x0:N , u0:N−1) ∈ F(X0,U), (7b)

whose solution u⋆
0:N−1 is blameless, and optimal with respect

to the user-defined objective q.

We define the following set to facilitate the solution to
Problem 2. Consider all the dynamically feasible state and
control sequences, (x0:N , u0:N−1) ∈ F(X0,U), that have a
cost q̂(x0:N , u0:N−1) ≤ αi for i = 1, . . . ,m. We denote
the set of terminal states attained by these state and control
sequences as

Hi(q̂) = {xN | (x0:N , u0:N−1) ∈ F(X0,U),
q̂(x0:N , u0:N−1) ≤ αi}. (8)

The set Hi(q̂) is the set of terminal conditions in the αi

sublevel set of q̂.
The following theorem presents the necessary and suffi-

cient conditions for designing an objective q̂ that produces
blameless control sequences.

Theorem 1. Under the nested constraint sets {Yi}1≤i≤m

defined in Definition 1, the optimal control problem (7)



produces blameless control sequences if and only if the
continuous objective q̂ satisfies

Hi(q̂) = Yi ∩ SucN (X0), ∀ 1 ≤ i ≤ m. (9)

Proof. Note that Hi(q̂) are compact sets since the dy-
namics (1) and the objective function q̂(x0:N , u0:N−1) are
continuous functions and U is a compact set.

First, we prove by contradiction that if q̂ satisfies (9),
then (7) produces blameless control sequences. Suppose q̂
satisfies (9), but the result of (7) is blameworthy. This means
if the solution to q̂ is (x⋆

0:N , u⋆
0:N−1) ∈ F(X0,U) with

x⋆
N ̸∈ Yi, there exists another state and control sequence pair,

(x†
0:N , u†

0:N−1) ∈ F(X0,U) with x†
N ∈ Yi. Then, by (9),

we have q̂(x†
0:N , u†

0:N−1) ≤ αi < q̂(x⋆
0:N , u⋆

0:N−1), which
contradicts the definition of an optimal solution of (7).

We will prove the reverse implication directly. Suppose (7)
produces blameless control sequences. Then, by construction,

max
u0:N−1

q̂(x0:N , u0:N−1)

s.t. F(X0,U)
xN ∈ Yi

≤ αi = inf
u0:N−1

q̂(x0:N , u0:N−1)

s.t. F(X0,U)
xN /∈ Yi

since, otherwise, there exists a solution to (7),
(x⋆

0:N , u⋆
0:N−1) ∈ F(X0,U) with x⋆

N /∈ Yi, for
which q̂(x⋆

0:N , u⋆
0:N−1) ≤ q̂(x†

0:N , u†
0:N−1) for some

(x†
0:N , u†

0:N−1) ∈ F(X0,U) with x†
N ∈ Yi. That is,

the control sequence u⋆
0:N−1 found by solving (7) is

blameworthy, which results in a contradiction. Thus,
if q̂(x0:N , u0:N−1) ≤ αi then xN ∈ Yi, and we have
xN ∈ Hi(q̂) implies xN ∈ Yi, i.e. Hi(q̂) ⊆ Yi ∩ SucN (X0).
Conversely, if z ∈ Yi ∩ SucN (X0) then there exists
(x0:N , u0:N−1) ∈ F(X0,U) with xN = z. By definition of
αi, we have q̂(x0:N , u0:N−1) ≤ αi. Thus, z ∈ Hi(q̂) i.e.
Yi ∩ SucN (X0) ⊆ Hi(q̂).

Theorem 1 provides the necessary and sufficient con-
ditions (9) for constructing an objective function q̂ for
which (7) produces blameless control sequences. Next, we
consider whether it is possible to construct the objective
function q̂ such that it produces control sequences that are
both blameless and optimal with respect to the original user-
defined objective function q. The following corollary shows
that there are continuous objectives q for which all contin-
uous objectives that produce blameless control sequences, q̂
produce sub-optimal control sequences. That is, there does
not exist an objective satisfying (9) that produces control
sequences that are optimal with respect to q.

Corollary 1. There exists a continuous objective q such
that there is no objective q̂ that produces blameless control
sequences that are also optimal with respect to q.

Proof. We will prove by construction that there exists an
objective q whose optimal solution does not correspond with
the optimal of any objective q̂ satisfying (9).

Consider a continuous objective q̂(x0:N , u0:N−1) that sat-
isfies (9). We will show q̂(x0:N , u0:N−1) = αi for all xN on

the boundary of Yi, denoted δYi. If q̂(x0:N , u0:N−1) > αi

for xN ∈ δYi, then by continuity of q̂, we have Hi ̸⊆ Yi,
and likewise if q̂(x0:N , u0:N−1) < αi for xN ∈ δYi then by
continuity, Yi ̸⊆ Hi. Thus, by contradiction with (8), we have
q̂(x0:N , u0:N−1) = αi for all xN ∈ δYi. Furthermore, by (8),
for any (x†

0:N , u†
0:N−1) ∈ F(X0,U) with x†

N in the interior
of Yi and (x‡

0:N , u‡
0:N−1) ∈ F(X0,U) with x‡

N ∈ δYi, we
have q̂(x†

0:N , u†
0:N−1) ≤ q̂(x‡

0:N , u‡
0:N−1).

Next, consider the objective q(x0:N , u0:N−1) = ∥xN − z∥
where z ∈ δYi is some point on the boundary of Yi with
a reachable neighborhood N(z) = {y ∈ Yi : ∥y − z∥ ≤ ϵ}
for some ϵ. By construction, this objective is continuous and
minimized by the feasible solution x⋆

N = z.
By construction, we have q(x0:N , u0:N−1) >

q(x⋆
0:N , u⋆

0:N−1) for any feasible sequence x0:N with
terminal condition xN ̸= z ∈ N(z). In contrast,
q̂(x0:N , u0:N−1) ≤ q̂(x⋆

0:N , u⋆
0:N−1) = αi for any

terminal condition xN ∈ N(z). Thus, there exists
xN ∈ N(z) that is optimal with respect to q̂,
q̂(x0:N , u0:N−1) ≤ q̂(x⋆

0:N , u⋆
0:N−1), but is sub-optimal with

respect to q, i.e. q(x0:N , u0:N−1) > q(x⋆
0:N , u⋆

0:N−1).

As a consequence of Corollary 1, it is possible for the
user to define a continuous mission objective q for which
it is impossible to formulate a single continuous optimal
control problem that produces control sequences that are both
blameless and optimal. In other words, Problem 2 does not
necessarily have a solution.

It follows that a blamelessly optimal control sequence
must be found by solving at least two sub-problems. We
propose an algorithm for finding blamelessly optimal control
sequences using exactly two sub-problems, rather than up to
m problems like in Algorithm 1. The proposed algorithm
first finds the highest priority set for which a feasible solution
exists. Then, the optimal control sequence with respect to the
mission objective subject to the highest priority constraint is
found. The algorithm is presented in Algorithm 2. For further
details on how i⋆ is found in Algorithm 2, see [22].

Algorithm 2 Two-Stage Blameless Control

Minimize i⋆ such that Yi⋆ ∩ SucN (X0) ̸= ∅
Solve

min
u0:N−1

q(x0:N , u0:N−1) (10a)

s.t. (x0:N , u0:N−1) ∈ F(X0,U), (10b)
xN ∈ Yi⋆ (10c)

Proposition 3. The solution to Algorithm 2 solves Problem 1.

Proof. We will prove that the solution to Algorithm 2 is
blameless directly. Assume the solution to Algorithm 2 is
u⋆
0:N−1. Then, the resulting state sequence x⋆

0:N has xN ∈
Yi⋆ , so that Yi⋆ ∩ SucN (X0) ̸= ∅. It follows directly from
Proposition 2 that the control sequence is blameless.

We will prove by contradiction that the solution to
Algorithm 2 is blamelessly optimal. Assume the solu-



tion to Algorithm 2 is (x⋆
0:N , u⋆

0:N−1), but there exists a
blameless solution (x†

0:N , u†
0:N−1) with q(x†

0:N , u†
0:N−1) <

q(x⋆
0:N , u⋆

0:N−1). Then, (x⋆
0:N , u⋆

0:N−1) is sub-optimal with
respect to Problem (10), contradicting the assumption that
(x⋆

0:N , u⋆
0:N−1) is the solution to Algorithm 2. Thus, the

optimal solution to Algorithm 2 is blamelessly optimal.

Algorithm 2 takes advantage of the fact that the prioritized
sets are nested to find blamelessly optimal control sequences.
Specifically, since high priority sets are contained in low pri-
ority sets, the problem of imposing priority within an optimal
control algorithm can be posed as two decoupled problems: a
set inclusion problem that finds the highest priority set that
has a nonempty intersection with the dynamically feasible
set, and an optimal control problem that finds the optimal
control sequence that is in the set found in the first problem.
The result is an algorithm that requires solving two optimiza-
tion problems, rather than the m required by lexicographic
optimization. This becomes computational beneficial when
the number of prioritized sets, m, is large.

IV. LANDING UNDER PRIORITIZED SETS

We consider the problem of an autonomous lander select-
ing a landing site, subject to control limits and limited power.
Prioritized sets are defined to dictate the most desirable
landing sites. This problem is illustrated in Figure 1 in
three-dimensional space. For ease of presentation, the results
consider the problem restriction to two-dimensional space, so
that the landing sites are restricted to a line.

Lander Dynamics.: We model the lander as a linear
system. The state consists of the velocity and position of
the lander, x =

[
ṙx ṙy rx ry

]T
. The control input is

acceleration u =
[
ax ay

]T
. The affine continuous-time

dynamics are ẋ = Ax+Bu+ Cg where

A =

[
02×2 02×2

I2×2 02×2

]
, B =

[
I2×2

02×2

]
, C =

 0
1

02×1

 ,

and g = 9.81 m
s2 is the acceleration due to gravity. The control

is subject to the box constraints

ax ∈
[
− 10, 10

]m
s2

and ay ∈
[
9, 30

]m
s2
.

The lander has initial condition

x0 =
[
−10m

s −5m
s −130m 100m

]T
,

and sufficient power to last time T = 12 seconds.
Prioritized constraints.: Five prioritized safety constraints

are imposed on the states ṙxN and rxN , jointly denoted xx
N =[

ṙxN rxN
]
. Namely, the position at which the lander lands

and the velocity in the direction parallel to the ground at
the time of landing are constrained by the prioritized safety
constraints. The resulting nested constraint sets are shown in

Fig. 4: Sets Y1, . . . ,Y5.

Figure 4 and defined as follows

Y1 = {(ṙxN , rxN ) | ṙxN ∈ [−0.5, 0.5] m
s
, rxN ∈ [−5, 5]m},

Y2 = {(ṙxN , rxN ) | ṙxN ∈ [−4, 4] m
s
, rxN ∈ [−15, 12]m},

Y3 = {(ṙxN , rxN ) | ṙxN ∈ [−7, 7] m
s
, rxN ∈ [−30, 26]m},

Y4 = {(ṙxN , rxN ) | ṙxN ∈ [−10, 10] m
s
, rxN ∈ [−40, 35]m},

Y5 = {(ṙxN , rxN ) | ṙxN ∈ [−15, 15] m
s
, rxN ∈ [−45, 52]m}.

Objective Function.: The objective function (3) is the
quadratic objective q(x0:N , u0:N−1) =

∑N
k=1 qk(xk, uk−1),

with

qk(xk, uk−1) = uT
k−1Ruk−1+(xx

N−ci)TQ(xx
N−ci), (11)

where R ∈ R2×2 is the input cost matrix, Q ∈ R2×2 is the
regulator cost matrix, and ci ∈ R2 is the center of the safety
set Yi. The weights, Q and R are tuned by the user.

Blamelessly optimal control sequences are found by solv-
ing Algorithm 2. First, an objective function is generated
that satisfies the necessary and sufficient conditions for an
objective function that produces blameless, but not neces-
sarily optimal, control sequences, according to Theorem 1.
This objective is used to determine the smallest index i⋆

such that xx
N ∈ Yi⋆ . Then, the control sequence u⋆

0:N−1 that
is optimal with respect to (11) subject to dynamics (2) and
terminal state constraint xx

N ∈ Yi⋆ is found.
The results of Algorithm 2 are compared to the results of

Algorithm 1, and an optimal control algorithm that is optimal
with respect to the quadratic objective q(x0:N , u0:N−1) =∑N

k=1 qk(xk, uk−1), with

qk(xk, uk−1) = uT
k−1Ruk−1+(xx

N−c1)TQ(xx
N−c1), (12)

where c1 is the center of the highest priority safety set.
This algorithm does not guarantee that the resulting control
sequences are blameless.

The weighting matrices are R = diag(0.5, 1)2 1
m2 and

Q = 52I s2
m2 for the blamelessly optimal and brute force al-

gorithms. The optimal algorithm uses R = diag(0.5, 1)2 1
m2

and is tested with two values of the input weighting matrix,
Q = 52I s2

m2 and Q = 0.152I s2
m2 .



Fig. 5: Comparison of blameless optimality, brute force and
optimal control algorithm for 12 second trajectory.

Results: Figure 5 shows the trajectories and velocity in
the x-direction generated using the brute force algorithm
(Algorithm 1), the blamelessly optimal control algorithm
(Algorithm 2), and the algorithm optimal with respect to (12)
with two weights. The brute force and blamelessly optimal
trajectories are identical, and both result in solutions that
have terminal states in the set Y3. The algorithm optimal
with respect to (12) with Q = 52I s2

m2 results in a terminal
position in Y4 and a terminal velocity outside of the safety
sets, and is therefore ultimately outside of the safety sets.
The trajectory resulting from the same problem with input
cost matrix Q = 0.152I s2

m2 has a terminal position in Y2 and
a terminal velocity in Y4, and therefore ultimately a terminal
state in Y4.

A. Implications of Blameless Optimal Control

The brute force algorithm (Algorithm 1), and the blame-
lessly optimal algorithm (Algorithm 2) result in equiva-
lent solutions. However, the brute force algorithm requires
solving up to m optimization problems given m safety
constraints. The blameless optimization problem requires
solving two optimization problems, regardless of the number
of defined prioritized safety constraints. The blamelessly
optimal algorithm is therefore increasingly beneficial when
several safety constraints are defined.

In safety critical applications, guarantees on the blame-
lessness of a control sequence are required to enable trust
of autonomous systems. The algorithm optimal with respect
to objective (12) requires parameter tuning to find the safest
possible solution. Moreover, the difficulty of tuning the input
weighting matrix and regulator weighting matrix increases
with the number of states being constrained. When problem
parameters such as initial conditions and problem horizon
are uncertain, tuning the weighting matrices is impractical
and could lead to blameworthy control sequences.

V. CONCLUSIONS

This work develops the concept of a blamelessly optimal
control sequence. We show that there is a tradeoff between
optimality and blamelessness, which motivates the need for
blameless optimality. An algorithm is presented to solve for
blamelessly optimal control sequences and results are pre-

sented on a rocket landing problem. Future work will expand
the idea of blameless optimality to stochastic systems.
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