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a b s t r a c t

Markovian network equilibrium generalizes the classical Wardrop equilibrium in network games. At a
Markovian network equilibrium, each player of the game solves a Markov decision process instead
of a shortest path problem. We propose two novel extensions of Markovian network equilibrium
by considering (1) variable demand, which offers the players a quitting option, and (2) multi-
commodity flow, which allows players to have heterogeneous ending time. We further develop
dynamic-programming-based iterative algorithms for the proposed equilibrium problems, together
with their arithmetic complexity analysis. Finally, we illustrate our network equilibrium model via a
multi-commodity ride-sharing example, and compare the computational efficiency of our algorithms
against the state-of-the-art optimization software MOSEK over extensive numerical experiments.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Network equilibrium problems arise in a variety of applica-
ions, such as resource allocation and routing in communica-
ion or transportation networks (Bertsekas, 1998; Bürger, Zelazo,
Allgöwer, 2014; Rockafellar, 1984; Xiao, Johansson, & Boyd,

004). Among the most well-studied examples is the Wardrop
quilibrium model in routing games (Beckmann, McGuire, & Win-
ten, 1956; Correa & Stier-Moses, 2010; Gartner, 1980a, 1980b;
atriksson, 1994). In this model, users in a transportation network
re assumed to choose routes with the cost that they perceive as
he lowest, i.e., each user solves a shortest path problem, under
he prevailing traffic conditions (Correa & Stier-Moses, 2010).
ith this assumption, the resulting equilibra are characterized
y the Wardrop equilibrium principle: the cost of all the routes
ctually used is equal, and less than those which would be ex-
erienced by a single user on any unused route (Wardrop &
hitehead, 1952).

✩ This work is supported by National Science Foundation, United States of
America Award 1736582. The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor Rong Su under the direction of Editor Christos G. Cassandras.
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1 This work was completed while Yue Yu was a graduate student at
niversity of Washington.
ttps://doi.org/10.1016/j.automatica.2022.110224
005-1098/© 2022 Elsevier Ltd. All rights reserved.
To ensure their practical relevance, it is often necessary to
incorporate stochasticity into network equilibrium problems. For
example, the stochastic user equilibrium (SUE) model (Fisk, 1980;
Liu, He, & He, 2009; Sheffi & Powell, 1982) considers indepen-
dent stochastic error on the route cost perceived by the users,
leading to a user distribution based on the logit (Dial, 1971) or
probit model (Daganzo & Sheffi, 1977); see Patriksson (1994, Sec.
2.8.1) and Cominetti, Facchinei, and Lasserre (2012) for a detailed
discussion. Unfortunately, the SUE model presents several draw-
backs: it requires computationally expensive route enumeration,
and is not suited for problems with overlapping routes (Baillon &
Cominetti, 2008).

To address these drawbacks, different network models con-
sider different types of stochasticity. In particular, Ahipaşaoğlu,
Arıkan, and Natarajan (2019), Baillon and Cominetti (2008) intro-
duced a Markovian network equilibrium model where users are
assumed to choose, instead of routes, sequences of actions with
the accumulated cost that they perceive as the lowest. Each action
is accompanied by a deterministic outcome and a stochastic cost.
For example, each vehicle in a transportation network is assumed
to choose a sequence of arcs, where each arc leads to a determin-
istic transition to the next node in the network and a stochastic
amount of travel time (Baillon & Cominetti, 2008). On the other
hand, Calderone and Sastry (2017a, 2017b) proposed a different
stochastic network equilibrium model. Unlike the one in Baillon
and Cominetti (2008), each action is accompanied by a stochastic
outcome and a deterministic cost. For example, an aircraft flying
in stormy weather is assumed to choose a sequence of waypoints
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o fly towards, where each choice costs a deterministic amount
f fuel usage and is accompanied by a stochastic change in the
eather condition (Nilim & El Ghaoui, 2005). As a result, instead
f a shortest path problem, each user solves a Markov decision
rocess (MDP) (Bertsekas, 1996; Puterman, 1994), where the cost
f different actions is determined by the prevailing choices of
ll users. This model has found a variety of applications in mod-
rn transportation including ridesharing and parking (Calderone,
017; Li, Yu, Calderone, Ratliff, & Açrkmeşe, 2019).
Although the results in Calderone and Sastry (2017a, 2017b)

erve as a first step toward a general class of stochastic dynamic
etwork equilibra, it has the following limitations: (a) it does
ot incorporate many important features of Wardrop equilibrium,
uch as variable demand and multi-commodity flow and (b) its
olution method relies exclusively on off-the-shelf optimization
oftware, which does not fully exploit the problem structure. We
ddress these limitations by making the following contributions.

(1) We develop novel extensions to the Markovian network
equilibrium model by considering (a) variable demand,
which offers the users a quitting option, and (b) multi-
commodity flow, which allows the users to have hetero-
geneous ending time.

(2) We design novel dynamic-programming-based algorithms
for the Markovian network equilibrium problems, together
with arithmetic complexity analysis. Our algorithms out-
perform state-of-the-art optimization software MOSEK in
extensive numerical experiments.

The rest of the paper is organized as follows. We first re-
iew some background on MDP in Section 2, then present our
ariable demand and multi-commodity flow equilibrium models
n Section 3. Section 4 focuses on developing efficient itera-
ive algorithms for our equilibrium problems.2 In Section 5, we
irst illustrate the equilibrium models in Section 3 via a multi-
ommodity ride-sharing example, then compare the algorithms
n Section 4 against commercial software Mosek. Finally, we
onclude with discussions and comments on the future directions
n Section 6.

Throughout the paper we will use the following notation: R
denotes the set of real numbers, R+ denotes the set of nonneg-
ative real numbers, and N denotes the set of positive integers;
[N] denotes the set {1, 2, . . . ,N} for integer N; aijk denotes the
ijkth component of a three-dimensional tensor a ∈ Rn1×n2×n3 , and
analogously, aij denotes the ijth entry of for a two-dimensional
tensor (matrix) a ∈ Rn1×n2 . Given b1, . . . , bN ∈ R, we say
(b⋆, i⋆) = mini∈[N] bi if b⋆ = mini∈[N] bi and i⋆ ∈ argmini∈[N] bi.

2. Preliminaries and background

A T -horizon Markov decision process (MDP) is defined by a
set of states [S], a set of actions [A], a cost tensor c ∈ RT×S×A, and
a transition probability tensor P ∈ [0, 1]S×A×S , where T , S, A ∈ N
denote the number of time steps, states, and actions, respectively.
Further, ctsa ∈ R denotes the cost of choosing action a ∈ [A]
in state s ∈ [S] at time t ∈ [T ], and Psas′ ∈ [0, 1] denotes the
probability of transition from state s ∈ [S] to s′ ∈ [S] when
choosing action a ∈ [A]. To find the optimal sequence of action
that minimizes the expected accumulated cost, one can solve
either one of the two following linear programs:

2 Due to the limit of space, we omit some of the proof details in Section 4,
nd include them in Yu, Calderone, Li, Ratliff, and Açıkmeşe (2021).
2

min
y

∑
t,s,a

ctsaytsa

s.t.
∑
a

y1sa = p1s,∑
a

yt+1,sa = pt+1,s +
∑
s′,a

Ps′asyts′a, ∀t ∈ [T − 1],

0 ≤ ytsa, ∀t ∈ [T ], s ∈ [S], a ∈ [A].

(1)

max
v

∑
t,s

ptsvts

s.t. vTs ≤ cTsa,
vts ≤ ctsa +

∑
s′

Psas′vt+1,s′ , ∀t ∈ [T − 1], s ∈ [S], a ∈ [A].

(2)

ere p ∈ RT×S
+ is such that p1s > 0 for some s ∈ [S]. If

∑
s∈[S] p1s =

and pts = 0 for all 1 ≤ t ≤ T and s ∈ [S], then p1s represents
he probability of starting the MDP in state s. Variable ytsa in
ptimization (1) represents the probability of choosing action a in
tate s at time t , and variable vts in optimization (2) represents the
xpected accumulated cost between time t and time T starting
rom state s.

One of the most popular numerical methods for linear pro-
ram (1) and (2) is dynamic programming, given by the following
lgorithm 1 and Algorithm 2.

Algorithm 1 Backward induction

Require: P , c , T .
Ensure: v, π .
1: Let (vTs, πTs) = min

a∈[A]
cTsa, ∀s ∈ [S].

2: for t = T − 1, T − 2, . . . , 1 do
3: (vts, πts) = min

a∈[A]
ctsa +

∑
s′

Psas′vt+1,s′ ,∀s ∈ [S]

4: end for

Algorithm 2 Forward induction

Require: π , p, P , T .
Ensure: y.
1: Initialize y = 0, let y1sπ1s ← p1s,∀s ∈ [S].
2: for t = 1, 2, . . . , T − 1 do
3: yt+1,sπt+1,s ← pt+1,s +

∑
j
Pjπtjsytjπtj ,∀s ∈ [S]

4: end for

Let (v, π ) be the output of Algorithm 1 with input (P, c, T ),
and y be the output of Algorithm 2 with input (π, p, P, T ), then
one can verify that such a solution pair (y, v) directly satisfies the
Karush–Kuhn–Tucker (KKT) conditions (Ben-Tal & Nemirovski,
2001, Thm. 1.3.3) of linear program (1) and (2). If we define the
sparsity level of an MDP as follows

σ = max{N1,N2}/S, (3)

where N1 = maxs,a
⏐⏐{s′|Psas′ > 0}

⏐⏐ and N2 = maxs′,a
⏐⏐{s|Psas′ > 0}

⏐⏐,
then σS measures the maximum number of states connected by
the transition kernel P . Further, it is straightforward to check that
Algorithm 1 costs O(σTS2A) arithmetic operations, and Algorithm
2 costs O(σTS2) arithmetic operations.

3. Markovian network equilibrium

MDP routing games combine the idea of MDP together with
classical routing games (Calderone & Sastry, 2017b). In an MDP
routing game, a fixed amount of players with the same planning
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orizon choose sequences of actions that they perceive as achiev-
ng the lowest expected accumulated cost under the prevailing
hoices of other players. The equilibra of an MDP routing game,
ermed Markovian network equilibra, are similar to the Wardrop
quilibra in a routing game where a fixed amount of players
ith the same destination choose routes that they perceive as the
hortest under the prevailing choices of other players.
We introduce two extensions to MDP routing games that

llow the amount of players to vary and the planning horizon
o differ. We will also show that, under some mild assumptions,
he corresponding Markovian network equilibra can be computed
sing convex optimization.

.1. Variable demand

One limitation of the MDP routing games in Calderone and
astry (2017b) is the assumption that the total amount of players
s fixed. However, an important feature in network games is to
llow the total amount of players to vary, or equivalently, to
rovide the players with a quitting action (Patriksson, 1994, Sec.
.1.2). Aiming to address this limitation, we propose the following
DP routing game with variable demand.

ame 1. At each time t ∈ [T ], pts new players start the game from
tate s ∈ [S]. Among these pts players, each one can choose to:

(1) quit the game immediately at the cost of ψts(zts),
(2) take action a ∈ [A] at the cost of φtsa(ytsa) and reach state

s′ ∈ [S] with probability Psas′ at time t + 1, then repeat
such process till t = T , when the player ends the game after
choosing the last action.

Here zts and ytsa denote the total amount of players choosing to quit
the game in state s at time t, and, respectively, taking action a in
state s at time t.

Remark 1. Game 1 is a special case of mean field games over
graphs (Gomes, Mohr, & Souza, 2009, 2010; Guéant, 2011, 2015;
Tanaka, Nekouei, Pedram, & Johansson, 2020). The interactions
among different players are mediated by a mean field, described
by function φtsa and function ψts for all t ∈ [T ], s ∈ [S], a ∈ [A].

Intuitively, one can interpret Game 1 as a competitive market
model. The supply side corresponds to the stochastic environ-
ment, providing the option of playing or quitting the game. The
demand side corresponds to the amount of players that decide
to play the game, which changes with the expected accumulated
cost of the playing option according to function ψts for all t ∈ [T ]
and s ∈ [S].

Remark 2. If the quitting option is not available, then Game 1
reduces to an MDP routing game with fixed demand, introduced
in Calderone and Sastry (2017b). On the other hand, if the transi-
tion in Game 1 is deterministic, i.e., for each s ∈ [S] and a ∈ [A],
there exists s′ ∈ [S] such that Psas′ = 1, then Game 1 reduces
to a classical single-commodity routing game with a variable
demand Patriksson (1994, Sec. 2.2.3). Particularly, each player
solves an MDP with deterministic transitions, which is equivalent
to a shortest path problem.

The Wardrop equilibrium principle is a key characterization
of the equilibra of network games (Correa & Stier-Moses, 2010;
Patriksson, 1994). The principle states that, at equilibra, only
the strategies with the lowest cost are actually used. Does this
principle apply to Game 1? As we show in the following, the
answer is affirmative.
First, we make the following assumptions on Game 1. z

3

Assumption 1. We assume that p ∈ RT×S
+ , P ∈ [0, 1]S×A×S

and
∑

s′ Psas′ = 1 for all s ∈ [S], a ∈ [A]. Further, the function
φtsa : [0, ρ] → R and function ψts : [0, ρ] → R are continuous
and strictly increasing over their respective domains, where ρ =∑

t,s pts.

With these assumptions, we now introduce the following pair
of primal–dual optimization problems associated with Game 1.

min
y,z

∑
t,s,a

∫ ytsa

0
φtsa(α)dα +

∑
t,s

∫ zts

0
ψts(α)dα

s.t.
∑
a

y1sa = p1s − z1s,∑
a

yt+1,sa = pt+1,s − zt+1,s +
∑
s′,a

Ps′asyts′a, ∀t ∈ [T − 1],

0 ≤ ytsa, 0 ≤ zts ≤ pts, ∀t ∈ [T ], s ∈ [S], a ∈ [A].

(4)

max
u,v,w,λ

∑
t,s

pts(vts − λts)−
∑
t,s,a

∫ utsa

φtsa(0)
φ−1tsa (α)dα

−

∑
t,s

∫ wts

ψts(0)
ψ−1ts (α)dα

s.t. vTs ≤ uTsa,

vts ≤ utsa +
∑
s′

Psas′vt+1,s′ , ∀t ∈ [T − 1],

vts ≤ wts + λts, 0 ≤ λts, ∀t ∈ [T ], s ∈ [S], a ∈ [A].

(5)

n particular, the constraint 0 ≤ zts ≤ pts allows the number
f players choosing to quit the game in state s at time t to vary
ithin interval [0, pts]. If variable zts is zero and function φtsa is
onstant-valued for all t ∈ [T ], s ∈ [S], a ∈ [A], i.e., the quitting
ption is removed and the cost of each action does not depend on
in Game 1, then one can verify that optimization (4) will reduce
o (1) and optimization (5) will reduce to (2).

The following theorem shows that the solutions of the opti-
izations in (4) and (5) satisfy the Wardrop equilibrium principle

n Game 1.

heorem 1. Suppose Assumption 1 holds, (y, z) solves (4), and
u, v, w, λ) solves (5), then for any pts > 0,

f zts = 0, then vts ≤ ψts(pts),
f 0 < zts < pts, then vts = ψts(zts),
f zts = pts, then vts ≥ ψts(0).

(6)

urther, if yTsa > 0 for some s ∈ [S] and a ∈ [A], then

vTs, a) = min
a′∈[A]

φTsa′ (yTsa′ ). (7)

f ytsa > 0 for some t ∈ [T − 1], s ∈ [S] and a ∈ [A], then

vts, a) = min
a′∈[A]

φtsa′ (ytsa′ )+
∑
s′

Psa′s′vt+1,s′ . (8)

roof. See Appendix A.1.

Theorem 1 shows that an equilibrium of Game 1 that satisfies
he Wardrop equilibrium principle not only exists, but can be
omputed by solving optimization (4) and (5). In particular, if
ction a is chosen in state s at time t by any player at equilibrium,
.e., ytsa > 0, then action a must be optimal in the sense of
lgorithm 1. On the other hand, Eq. (6) says that if some players
hoose the quitting option in state s at time t at equilibrium,
.e., zts > 0, then the cost of playing is no more than quitting,
.e., vts ≥ ψts(pts). Similarly, if some players choose to play, i.e.,

ts < pts, then the cost of playing is no more than quitting,
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≥

.e., vts ≤ ψts(pts). Therefore, Theorem 1 indeed describes a
Wardrop equilibrium where no individual player can benefit from
unilaterally switching to alternative actions.

3.2. Multicommodity flow

Another limitation of the MDP routing games in Calderone and
Sastry (2017b) is that all players are assumed to end their game at
the same time, which is analogous to the single-commodity rout-
ing game where all vehicles have the same destination.
Aiming to address this limitation, we propose the following
multi-commodity MDP routing game, where players can have
heterogeneous ending time, denoted by set T. We assume, with-
ut loss of generality, that T ⊂ [T ] and T ∈ T.

ame 2. At each time t ∈ [T ], pτts new players with a common
nding time τ ∈ T (τ ≥ t) start the game from state s. Each of these
layers can choose the action a at the cost of φtsa(

∑
τ ,τ≥t y

τ
tsa) and

each state s′ with probability Psas′ at time t + 1, then repeat this
rocess till t = τ , when the player ends the game after choosing the
ast action. Here yτtsa denotes the total amount of players that end
he game at time τ and choose action a in state s at time t.

emark 3. If T = {T }, then Game 2 reduces to a MDP routing
ame introduced in Calderone and Sastry (2017b). On the other
and, if the transition in Game 2 is deterministic, i.e., for each
∈ [S] and a ∈ [A], there exists s′ ∈ [S] such that Psas′ = 1, then
ame 2 reduces to the traditional multi-commodity routing game
ith a fixed demand Patriksson (1994, Sec. 2.1.1). Particularly, the
tate where a player starts and ends the game forms an origin–
estination pair, which is jointly determined by the starting state
nd the deterministic transition.

Similar to Game 1, the equilibrium of Game 2 can also be
omputed by solving convex optimization problems, as we show
n the following.

First, we make the following assumptions on Game 2.

ssumption 2. We assume T ∈ T ⊆ [T ], pτts ∈ R+ for all τ ∈ T,
≥ τ and s ∈ [S]; P ∈ RS×A×S

+ and
∑

s′ Psas′ = 1 for all s ∈ [S],
∈ [A]. Further, the function φtsa : [0, ρ] → R is continuous and
trictly increasing, where ρ =

∑
τ

∑
t≤τ ,s p

τ
ts.

With these assumptions, we now introduce the following pair
f primal–dual optimization problems associated with Game 2.

min
{yτ }τ∈T

∑
t,s,a

∫ ∑
τ ,τ≥t y

τ
tsa

0
φtsa(α)dα

s.t.
∑
a

yτ1sa = pτ1s∑
a

yτt+1,sa = pτt+1,s +
∑
s′,a

Ps′asyτts′a, ∀t ∈ [τ − 1],

0 ≤ yτtsa, ∀τ ∈ T, t ∈ [τ ], s ∈ [S], a ∈ [A]

(9)

max
u,{vτ }τ∈T

∑
t,s

∑
τ ,τ≥t

pτtsv
τ
ts −

∑
t,s,a

∫ utsa

φtsa(0)
φ−1tsa (α)dα

s.t. vττ s ≤ uτ sa,
vτts ≤ utsa +

∑
s′

Psas′vτt+1,s′ , ∀t ∈ [τ − 1],

∀τ ∈ T, s ∈ [S], a ∈ [A]

(10)

The following theorem shows that the solutions to optimiza-
tion problems (9) and (10) satisfy the Wardrop equilibrium prin-
ciple in Game 2.
4

Theorem 2. Suppose Assumption 2 holds, y solves (9), and (u, v)
solves (10). If yττ sa > 0 for some τ ∈ T, s ∈ [S], a ∈ [A], then

(vττ s, a) = min
a′∈[A]

φτ sa′
( ∑
τ ,τ≥t

yττ sa′
)
. (11)

If yτtsa > 0 for some τ ∈ T, t ∈ [τ − 1], s ∈ [S], a ∈ [A], then

(vτts, a) = min
a′∈[A]

φtsa′
( ∑
τ ,τ≥t

yτtsa′
)
+

∑
s′

Psa′s′vτt+1,s′ . (12)

Proof. See Appendix A.2.

Theorem 2 shows that an equilibrium of Game 2 that satisfies
the Wardrop equilibrium principle not only exists, but can be
computed by solving optimization (9) and (10). In particular, the
equations in (11) and (12) characterize a multi-commodity flow
Wardrop equilibrium in the sense that no individual player can
benefit from unilaterally switching to alternative actions at any
time.

4. Efficient algorithms via linearization

In this section, we develop efficient numerical algorithms for
the network equilibrium problems introduced in the previous
section. We will first show that the linearized versions of problem
(4) and problem (9) can be solved via Algorithm 1 and Algorithm
2. This observation motivates efficient iterative algorithms with
detailed arithmetical complexity. Due to the limit of space, we
omit some of the proof details in this section and include them
in Yu et al. (2021).

We will use the following notation to simply our later discus-
sions. Given y, u ∈ RT×S×A and z, w ∈ RT×S , we let φ(y), φ−1(u) ∈
RT×S×A and ψ(z), ψ−1(w) ∈ RT×S be such that [φ(y)]tsa =
φtsa(ytsa), [φ−1(u)]tsa = φ−1tsa (utsa), [ψ(z)]ts = φts(zts), and [ψ−1(w)]ts
= ψ−1ts (wts) for all t ∈ [T ], s ∈ [S], a ∈ [A]. We also let u, u ∈
RT×S×A andw,w ∈ RT×S be such that utsa = φtsa(0), utsa = φtsa(ρ),
wts = ψts(0) and wts = ψts(ρ) for all t ∈ [T ], s ∈ [S], a ∈ [A].

.1. Linearization and dynamic programming

If we approximate the objective function in (4) using its lin-
arization at u ∈ RT×S×A and w ∈ RT×S , we obtain the following
ptimization:

−g(u, w) = min
y,z

∑
t,s,a

utsaytsa +
∑
t,s

wtszts

s.t. constraints in problem (4).
(13)

imilarly, if we approximate the objective function in (9) using
ts linearization at u ∈ RT×S×A, we obtain the following

−h(u) = min
yτ ,τ∈T

∑
t,s,a

∑
τ ,τ≥t

utsayτtsa

s.t. constraints in problem (9).
(14)

he following two lemmas show that both optimization (13) and
ptimization (14) can be solved using Algorithm 1 and 2.

emma 1. Suppose Assumption 1 holds. Let (v̂, π̂ ) be the output
f Algorithm 1 with input (P, u, T ). Let ẑts = pts if v̂ts > wts, and
ˆts = 0 if v̂ts ≤ wts for all t ∈ [T ], s ∈ [S]. In addition, let
ˆ be the output of Algorithm 2 with input (π̂ , p − ẑ, P, T ). Then
−g(u, w) =

∑
t,s,a utsaŷtsa +

∑
t,swtsẑts. Further, for any u′ ∈

T×S×A and w′ ∈ RT×S ,

g(u′, w′)− g(u, w)∑
(u′tsa − utsa)(−ŷtsa)+

∑
(w′ts − wts)(−ẑts).
t,s,a t,s
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roof. See Yu et al. (2021, Appx. A.3).

emma 2. Suppose Assumption 2 holds. Let (v̂τ , π̂ ) be the output of
lgorithm 1 with input (P, u, τ ), ŷτ be the output of Algorithm 2 with

input (π̂ τ , pτ , P, τ ). Then −h(u) =
∑

t,s,a
∑

τ ,τ≥t utsaŷτtsa. Further,
or any u′ ∈ RT×S×A,

(u′)− h(u) ≥
∑
t,s,a

∑
τ ,τ≥t

(u′tsa − utsa)(−ŷτtsa).

roof. See Yu et al. (2021, Appx. A.4).

.2. Iterative algorithms using linearization

We now develop iterative algorithms for the optimization
roblems in Section 3 using linearization. We will use the fol-
owing notion of ϵ-optimal solutions: given a constrained opti-
ization, we say a solution is ϵ-optimal ϵ ∈ R+ if it satisfies all

he constraints and the objective function value evaluated at this
olution is at most ϵ away from the optimal value. We also make
he following assumptions on Games 1 and 2.

ssumption 3. Function φtsa : [0, ρ] → R and function
ts : [0, ρ] → R are L-Lipschitz continuous over their respective
omains for all t ∈ [T ], s ∈ [S] and a ∈ [A].

ssumption 4. Function φtsa : [0, ρ] → R is L-Lipschitz
ontinuous over its domain for all t ∈ [T ], s ∈ [S] and a ∈ [A].

emark 4. Assumptions 3 and 4 are mild assumptions on the
ifferentiability of the corresponding functions. For example, if
tsa is continuously differentiable, then using the mean value
heorem one can show that Assumption 4 is satisfied by choosing

≥ max
α∈[0,ρ]

|φ′tsa(α)|, ∀t ∈ [T ], s ∈ [S], a ∈ [A].

Algorithm 3 Frank–Wolfe method

Require: p, P, φ, ψ, T , {αk
}, initial value for y, z.

1: for k = 1, 2, . . . , K do
2: (v̂, π̂ )← Alg. 1(P, φ(y), T ).

3: ẑts =
{
pts, v̂ts > ψts(zts)
0, v̂ts ≤ ψts(zts)

, ∀t ∈ [T ], s ∈ [S]

4: ŷ← Alg. 2 (π̂ , p− ẑ, P, T ).
5: y← y− αk(y− ŷ)
6: z ← z − αk(z − ẑ)
7: end for

Algorithm 4 Multicommodity Frank–Wolfe method

Require: p, P, φ,T, {αk
}, initial value for yτ for all τ ∈ T.

1: for k = 1, 2, . . . , K do
2: ŷtsa =

∑
τ ,τ≥t y

τ
tsa, ∀t ∈ [T ], s ∈ [S], a ∈ [A]

3: (v̂τ , π̂ τ )←Alg. 1(P, φ(ŷ), τ ), ∀τ ∈ T
4: ŷτ ← Alg. 2(π̂ τ , pτ , P, τ ), ∀τ ∈ T
5: yτ ← yτ − αk(yτ − ŷτ ), ∀τ ∈ T
6: end for

Based on Lemmas 1 and 2, we propose to solve optimization
4) and (9) using the Frank–Wolfe method (Frank & Wolfe, 1956),
hich repeatedly solves the linearized versions of (4) and (9).
e summarize the Frank–Wolfe method for optimization (4) and

9) in Algorithm 3 and, respectively, Algorithm 4. The following
heorem provides the overall arithmetic complexity analysis of
lgorithm 3 and Algorithm 4.
5

Theorem 3. Let σ be given by (3). If Assumptions 1 and 3 hold,
then Algorithm 3 with αk

=
2

k+1 gives an ϵ-optimal solution
of optimization (4) in O( σTS

2A
ϵ

) arithmetic operations. Similarly, if
ssumptions 2 and 4 hold, then Algorithm 4 with αk

=
2

k+1 gives
an ϵ-optimal solution of optimization (9) in O( σT

2S2A
ϵ

) arithmetic
perations.

roof. See Yu et al. (2021, Appx. A.5).

The idea of the proof is to combine the iteration complexity
f Frank–Wolfe method (Bubeck et al., 2015, Thm. 3.8) together
ith the arithmetic complexity of Algorithm 1 and Algorithm 2.
What about optimization (5) and (10)? Observe that the opti-

ization in (5) is equivalent to the following

max
u,w
−g(u, w)−

∑
t,s,a

∫ utsa

φtsa(0)
φ−1tsa (α)dα −

∑
t,s

∫ wts

ψts(0)
ψ−1ts (α)dα

(15)

here

−g(u, w) = max
v,λ

∑
t,s

pts(vts − λts)

s.t. constraints in (5).
(16)

ne can show that the optimization in (16) is exactly the dual
roblem of the linear program in (13). Since the constraint sets
n (13) and (16) are both nonempty, the optimal value of (13)
nd (16) is the same (Ben-Tal & Nemirovski, 2001, Thm. 1.3.3). In
ther words, (5) can be equivalently written as follows

max
u,w
−g(u, w)−

∑
t,s,a

∫ utsa

φtsa(0)
φ−1tsa (α)dα −

∑
t,s

∫ wts

ψts(0)
ψ−1ts (α)dα

s.t. −g(u, w) is the optimal value of (13).

(17)

Using similar reasoning, we can rewrite (10) as follows

max
u
−h(u)−

∑
t,s,a

∫ utsa

φtsa(0)
φ−1tsa (α)dα

s.t. −h(u) is the optimal value of (14).
(18)

Algorithm 5 Subgradient method

Require: P, p, φ, ψ, T , {αk
}, initial value for u, w.

1: for k = 1, 2, . . . , K do
2: (v̂, π̂ )← Alg. 1(P, u, T )

3: ẑts =
{
pts, v̂ts > wts

0, v̂ts ≤ wts
, ∀t ∈ [T ], s ∈ [S]

4: ŷ← Alg. 2 (π̂ , p− ẑ, P, T ).
5: u← min{u,max{u, u+ αk

(
ŷ− φ−1(u)

)
}}

6: w← min{w,max{w,w + αk
(
ẑ − ψ−1(w)

)
}}

7: end for

Algorithm 6 Multi-commodity subgradient method

Require: p, P, φ,T, {αk
}, initial value of u.

1: for k = 1, 2, . . . , K do
2: (v̂τ , π̂ τ )← Alg. 1(P, u, τ ), ∀τ ∈ T
3: ŷτ ←Alg. 2(π̂ τ , pτ , P, τ ), ∀τ ∈ T
4: ŷtsa =

∑
τ ,τ≥t y

τ
tsa, ∀t ∈ [T ], s ∈ [S], a ∈ [A]

5: u← min{u,max{u, u+ αk
(
ŷ− φ−1(u)

)
}}

6: end for

Based on Lemmas 1 and 2, we propose to solve optimization
(17) and (18) using the projected subgradient method, which
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epeatedly computes the slope of a linear underestimate, or sub-
radient, of function g(u, w) and function h(u), respectively. We

summarize the projected subgradient method for optimization
(17) and (18) in Algorithm 5 and, respectively, Algorithm 6. The
following theorem shows the overall arithmetic complexity of
Algorithm 5 and Algorithm 6.

Theorem 4. Let σ be given by (3). If Assumptions 1 and 3 hold,
then Algorithm 6 with αk

=
2L
k+1 gives an ϵ-optimal solution to (17)

sing O( σTS
2A
ϵ

) arithmetic operations. Similarly, if Assumptions 2 and
hold, then Algorithm 6 with αk

≡
2LT
k+1 gives an ϵ-optimal solution

to (18) in O( σT
2S2A
ϵ

) arithmetic operations.

roof. See Yu et al. (2021, Appx. A.6).

The idea of the proof is to combine the iteration complex-
ty of projected subgradient method (Bubeck et al., 2015, Thm.
.9) together with the arithmetic complexity of Algorithm 1 and
lgorithm 2.
Theorems 3 and 4 show that the arithmetic complexity of solv-

ng Markovian network equilibrium problems is the same as solv-
ng the corresponding MDP in terms of their dependency on the
roblem dimension and sparsity (i.e., T , S, A, σ ). In other words,

the generalization from MDP to Markovian network equilibrium
does not worsen the curse of dimensionality.

5. Numerical examples

In this section, we first illustrate the equilibrium models in
Section 3 using a ride-sharing example, then demonstrate the
efficiency of the algorithms in Section 4 by comparing them
against commercial software MOSEK over extensive numerical
experiments.

5.1. Multicommodity ride-sharing game

We consider the game played by ride-sharing drivers in Seat-
tle, competing for customers (Li et al., 2019). We first abstract
the Seattle area as an undirected graph illustrated in Fig. 1, whose
nodes denote various neighborhoods in Seattle, and edges denote
available routes, labeled by its driving distance. We denote the
set of neighboring nodes of node s as Ns. We model the decision-
making of an ride-sharing driver on a typical weekend night (7
pm–1 am) as an MDP defined as follows.

• Time steps: t = 1, 2, . . . , 36 denotes the (end of) 10-
minute-intervals between 7 pm and 1 am.
• States: [S] correspond to different nodes in graph G.
• Actions: in state s, as′ denotes picking up a waiting rider

with destination s′ for all s′ ∈ Ns; await denotes waiting for
a future rider.
• Transition kernel: we assume Psas′ = 1 if a = as′ , s′ ∈ Ns,

Psas′ = 1/(|Ns| + 1) if a = await, s′ ∈ Ns ∪ {s}, and all other
entries of Psas′ are zero. Here we use a uniform distribution
over neighboring states to describe how the drivers relocate
themselves while waiting.
• Cost: due to the competition among drivers, we assume the

profit for picking up a rider decreases with the amount of
drivers making the same offer, namely ftss′ = α + β

(
1 −

ytsas′
γtss′

)
distss′ for all t ∈ [T ], s ∈ [S], where α and β are the

baseline profit and, respectively, nominal profit per mile.
We let distss′ denotes distance(miles) between s and s′, γtss′
denotes the rider demand from s to s′ at time t , and finally
ytsas′ denotes the amount of drivers choosing action as′ in
state s at time t . The cost of action a in state s is a function
of ytsa given by φtsa(ytsa) = −ftss′ if a = as′ , s′ ∈ Ns, and
φ (y ) = −

∑
P ′ f ′ if a = a .
tsa tsa s′∈Ns sas tss wait S

6

Fig. 1. Seattle transportation network and candidate LRT routes: 7-9-10-11
(red) and 6-8-9-11 (blue), map data ©Google 2021. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Values of γtss′ .
γtss′ s < 9 ≤ s′ s, s′ ≥ 9 s′ < 9 ≤ s s, s′ < 9

1 ≤ t ≤ 6 600 200 60 60
7 ≤ t ≤ 30 200 400 200 60
31 ≤ t ≤ 36 60 100 600 60

• Horizon: We assume that 10 drivers start working from each
state every 10 min between 7 pm and 9 pm. Once started,
each driver is assumed to only work for 4 consecutive hours
to avoid fatigue, i.e., p(t+24)ts = 10 for all s ∈ [S] and t ∈ [12].

The function φtsa defined above is linear with slope α, hence
Assumption 2 is satisfied with L = α. We also assume that each
driver can travel between neighboring nodes within one time
step in this simplified transportation network. In practice, such
assumption can be ensured by adding more nodes to the network
using a finer discretization of the interested area.

The equilibrium of the above game is a multi-commodity
Markovian network equilibrium discussed in Section 3.2. We
consider the scenario where α = 10, β = 0.2, γtss′ is given
in Table 1 and distss′ is given in Fig. 1. We compute the driver
number in the downtown area D = {9, 10, 11} by solving the
optimization in (9) using commercial software Mosek (MOSEK
ApS, 2019). Fig. 2 shows the results, where we can see that the
driver number increases during 1 ≤ t ≤ 12, then decreases
during 24 ≤ t ≤ 36. There are two sudden changes in the
increasing/decreasing rate around t = 7 and t = 31, due to the
corresponding changes in values of γtss′ in Table 1.

We further consider a transportation network design problem
s follows. Suppose that Seattle city council is considering two
andidate light rail transit (LRT) routes, 7-9-10-11 and 6-8-9-11
see Fig. 1), to alleviate the congestion in downtown area, and
ach candidate will reduce the demand of ride-sharing services
namely, value of γtss′ ) by 50% along its route. Our results allow
omparison of the two candidates using simulation, and the re-
ults are also given in Fig. 2, which shows that route 6-8-9-11
s more effective that route 7-9-10-11 in terms of reducing the
mount of drivers in D.

.2. Computation experiments

To demonstrate the efficiency of the algorithms developed in

ection 4, we compare the computation time of our algorithms
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Fig. 2. Number of drivers in downtown area D = {9, 10, 11}.

against commercial software Mosek, used in the previous section,
over randomly generated examples. We use rand(a, b) to denote a
random number sampled from uniform distribution over interval
[a, b] where a, b ∈ R and a ≤ b. We let Psas′ = rand(0, 1) for
all s ∈ [S], a ∈ [A], then normalized such that

∑
s′ Psas′ = 1;

φtsa(α) = rand(1, 2)α + rand(1, 2) for all t ∈ [T ], s ∈ [S], a ∈ [A];
pts = rand(0, 1) for all s ∈ [S] if t = 1 and zero otherwise. In
the variable demand case, we let ψts(α) = rand(1, 2)α − t + 21
for all t ∈ [T ], s ∈ [S]. In the multi-commodity flow case, we let
T = {5, 10}.

We fix T = A = 10 and let S range between 20 and 200,
then test the computation time of Algorithm 3, Algorithm 5,
Algorithm 4 and Algorithm 6, where all algorithms terminate
when their objective function value agrees with the optimal one
obtained by MOSEK with less than 0.5% relative error. The average
computation time over 100 examples, along with corresponding
3-standard deviation interval are reported in Fig. 3.3 All codes are
in MATLAB and run on a 1.6 GHz laptop. From results in Fig. 3
we can see that, over the randomly generated 2000 examples,
the subgradient method and the Frank–Wolfe method reduce the
computation time consumed by Mosek by one and, respectively,
two orders of magnitudes, at the price of a mere 0.5% of relative
accuracy.

6. Conclusion

We study the variable demand and multi-commodity exten-
sions in Markovian network equilibrium. We also propose ef-
ficient algorithms that outperform state-of-the-art commercial
optimization software. However, the current work still has sev-
eral limitations. For example, the cost of actions perceived by
the players is assumed to be exact, rather than corrupted by
stochastic noise, as considered in SUE model. Further, the ending
time of each player is fixed at the beginning of the game. A
more realistic assumption is to allow the players to change their
ending time and recompute the equilibrium periodically. We aim
to address these limitations in future work.

Appendix

A.1. Proof of Theorem 1

From the duality theorem of convex optimization (Rockafellar,
1970, Cor. 28.3.1) we know that, under Assumption 3, an optimal

3 Since Mosek solves primal and dual problem simultaneously, we only report
ts solving time for optimization (4) and (9).
7

Fig. 3. Average computation time and 3-standard deviation intervals of 100
experiments with T = A = 10.

olution pair of optimization (4) and (5) necessarily satisfies the
ollowing KKT conditions

Ts = φTsa(yTsa)− µTsa,

ts = φtsa(ytsa)+
∑
s′

Psas′vt+1,s′ − µtsa,

ts = ψts(zts)+ λts − θts,

tsaµtsa = 0, ztsθts = 0, λts(zts − pts) = 0

tsa, zts, µtsa, θts, λts ≥ 0,

or all t ∈ [T ], s ∈ [S], a ∈ [A]. One can verify that the above
onditions imply (6), (7) and (8).

.2. Proof of Theorem 2

From the duality theorem of convex optimization (Rockafellar,
970, Cor. 28.3.1) we know that, under Assumption 4, an optimal
olution pair of optimization (9) and (10) necessarily satisfies the
ollowing KKT conditions
τ
τ s = φτ sa

(∑
j,j≥τ

yjτ sa
)
− µττ sa = 0,

vτts = φtsa
(∑
j,j≥t

yjtsa
)
+

∑
s′

Psas′vτt+1,s′ − µ
τ
tsa = 0,

yτtsaµ
τ
tsa = 0, yτtsa, µ

τ
tsa ≥ 0,

or all t ∈ [τ ], τ ∈ T, s ∈ [S], a ∈ [A]. One can verify that the
above conditions imply (11) and (12).
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